#include "command_match.h" #include "command_parse.h" #include #include "memory.h" /* matcher helper prototypes */ static int add_nexthops(struct list *, struct graph_node *); static struct list * match_command_r (struct graph_node *, vector, unsigned int); static int score_precedence (enum graph_node_type); static enum match_type min_match_level(enum node_type); static struct graph_node * copy_node (struct graph_node *); static void delete_nodelist (void *); static struct graph_node * disambiguate (struct graph_node *, struct graph_node *, char *); /* token matcher prototypes */ static enum match_type match_token (struct graph_node *, char *); static enum match_type match_ipv4 (const char *); static enum match_type match_ipv4_prefix (const char *); static enum match_type match_ipv6 (const char *); static enum match_type match_ipv6_prefix (const char *); static enum match_type match_range (struct graph_node *, const char *); static enum match_type match_word (struct graph_node *, const char *); static enum match_type match_number (struct graph_node *, const char *); static enum match_type match_variable (struct graph_node *, const char *); /* matching functions */ static enum matcher_rv matcher_result_value; enum matcher_rv match_command (struct graph_node *start, const char *line, struct list **argvv, struct cmd_element **el) { matcher_result_value = MATCHER_NO_MATCH; // parse command vector vline = cmd_make_strvec (line); for (unsigned int i = 0; i < vector_active(start->children); i++) { // call recursive matcher on each starting child *argvv = match_command_r(vector_slot(start->children, i), vline, 0); if (*argvv) break; } if (*argvv) { struct listnode *ln; struct graph_node *gn; for (ALL_LIST_ELEMENTS_RO(*argvv,ln,gn)) if (gn->type == END_GN) { *el = gn->element; break; } assert(el); } return matcher_result_value; } /** * Builds an argument list given a DFA and a matching input line. * * First the function determines if the node it is passed matches the first * token of input. If it does not, it returns NULL. If it does match, then it * saves the input token as the head of an argument list. * * The next step is to see if there is further input in the input line. If * there is not, the current node's children are searched to see if any of them * are leaves (type END_GN). If this is the case, then the bottom of the * recursion stack has been reached, and the argument list (with one node) is * returned. If it is not the case, NULL is returned, indicating that there is * no match for the input along this path. * * If there is further input, then the function recurses on each of the current * node's children, passing them the input line minus the token that was just * matched. For each child, the return value of the recursive call is * inspected. If it is null, then there is no match for the input along the * subgraph headed by that child. If it is not null, then there is at least one * input match in that subgraph (more on this in a moment). * * If a recursive call on a child returns a non-null value, then it has matched * the input given it on the subgraph that starts with that child. However, due * to the flexibility of the grammar, it is sometimes the case that two or more * child graphs match the same input (two or more of the recursive calls have * non-NULL return values). This is not a valid state, since only one true * match is possible. In order to resolve this conflict, the function keeps a * reference to the child node that most specifically matches the input. This * is done by assigning each node type a precedence. If a child is found to * match the remaining input, then the precedence values of the current * best-matching child and this new match are compared. The node with higher * precedence is kept, and the other match is discarded. Due to the recursive * nature of this function, it is only necessary to compare the precedence of * immediate children, since all subsequent children will already have been * disambiguated in this way. * * In the event that two children are found to match with the same precedence, * then the input is ambiguous for the passed cmd_element and NULL is returned. * * The ultimate return value is an ordered linked list of nodes that comprise * the best match for the command, each with their `arg` fields pointing to the * matching token string. * * @param[out] start the start node. * @param[in] vline the vectorized input line. * @param[in] n the index of the first input token. Should be 0 for external * callers. */ static struct list * match_command_r (struct graph_node *start, vector vline, unsigned int n) { // get the minimum match level that can count as a full match enum match_type minmatch = min_match_level(start->type); // get the current operating token char *token = vector_slot(vline, n); // if we don't match this node, die if (match_token(start, token) < minmatch) return NULL; // pointers for iterating linklist struct graph_node *gn; struct listnode *ln; // get all possible nexthops struct list *next = list_new(); add_nexthops(next, start); // determine the best match int ambiguous = 0; struct list *bestmatch = NULL; for (ALL_LIST_ELEMENTS_RO(next,ln,gn)) { // if we've matched all input we're looking for END_GN if (n+1 == vector_active (vline)) { if (gn->type == END_GN) { bestmatch = list_new(); listnode_add(bestmatch, copy_node(gn)); bestmatch->del = &delete_nodelist; break; } else continue; } // else recurse on candidate child node struct list *result = match_command_r (gn, vline, n+1); // save the best match, subtle logic at play here if (result) { if (bestmatch) { struct list *to_delete = result; struct graph_node *new = listgetdata(result->head), *old = listgetdata(bestmatch->head); char *nextoken = vector_slot (vline, n+1); struct graph_node *best = disambiguate(new, old, nextoken); ambiguous = !best || (ambiguous && best == old); if (best == new) { to_delete = bestmatch; bestmatch = result; } list_delete (to_delete); } else bestmatch = result; } } if (bestmatch) { if (ambiguous) { list_delete(bestmatch); bestmatch = NULL; matcher_result_value = MATCHER_AMBIGUOUS; } else { // copy current node, set arg and prepend to bestmatch struct graph_node *curr = copy_node(start); curr->arg = XSTRDUP(MTYPE_CMD_TOKENS, token); list_add_node_prev (bestmatch, bestmatch->head, curr); matcher_result_value = MATCHER_OK; } } else { if (n+1 == vector_active(vline) && matcher_result_value == MATCHER_NO_MATCH) matcher_result_value = MATCHER_INCOMPLETE; } // cleanup list_delete (next); return bestmatch; } struct list * match_command_complete (struct graph_node *start, const char *line) { // vectorize command line vector vline = cmd_make_strvec (line); // pointer to next input token to match char *token; struct list *current = list_new(), // current nodes to match input token against *next = list_new(); // possible next hops after current input token // pointers used for iterating lists struct graph_node *gn; struct listnode *node; // add all children of start node to list add_nexthops(next, start); unsigned int idx; for (idx = 0; idx < vector_active(vline) && next->count > 0; idx++) { list_free (current); current = next; next = list_new(); token = vector_slot(vline, idx); for (ALL_LIST_ELEMENTS_RO(current,node,gn)) { switch (match_token(gn, token)) { case partly_match: if (idx == vector_active(vline) - 1) { listnode_add(next, gn); break; } case exact_match: add_nexthops(next, gn); break; default: break; } } } /* Variable summary * ----------------------------------------------------------------- * token = last input token processed * idx = index in `command` of last token processed * current = set of all transitions from the previous input token * next = set of all nodes reachable from all nodes in `matched` */ matcher_result_value = idx + 1 == vector_active(vline) && next->count ? MATCHER_OK : MATCHER_NO_MATCH; list_free (current); cmd_free_strvec(vline); return next; } /** * Adds all children that are reachable by one parser hop * to the given list. NUL_GN, SELECTOR_GN, and OPTION_GN * nodes are treated as transparent. * * @param[out] l the list to add the children to * @param[in] node the node to get the children of * @return the number of children added to the list */ static int add_nexthops(struct list *l, struct graph_node *node) { int added = 0; struct graph_node *child; for (unsigned int i = 0; i < vector_active(node->children); i++) { child = vector_slot(node->children, i); switch (child->type) { case OPTION_GN: case SELECTOR_GN: case NUL_GN: added += add_nexthops(l, child); break; default: listnode_add(l, child); added++; } } return added; } /** * Determines the node types for which a partial match may count as a full * match. Enables command abbrevations. */ static enum match_type min_match_level(enum node_type type) { switch (type) { case WORD_GN: return partly_match; default: return exact_match; } } /* Precedence score used to disambiguate matches. */ static int score_precedence (enum graph_node_type type) { switch (type) { // some of these are mutually exclusive, so they share // the same precedence value case IPV4_GN: case IPV4_PREFIX_GN: case IPV6_GN: case IPV6_PREFIX_GN: case NUMBER_GN: return 1; case RANGE_GN: return 2; case WORD_GN: return 3; case VARIABLE_GN: return 4; default: return 10; } } /* Disambiguation logic to pick the best of two possible matches */ static struct graph_node * disambiguate (struct graph_node *first, struct graph_node *second, char *token) { // if the types are different, simply go off of type precedence if (first->type != second->type) { int firstprec = score_precedence(first->type); int secndprec = score_precedence(second->type); if (firstprec != secndprec) return firstprec < secndprec ? first : second; else return NULL; } // if they're the same, return the more exact match enum match_type fmtype = match_token (first, token); enum match_type smtype = match_token (second, token); if (fmtype != smtype) return fmtype > smtype ? first : second; return NULL; } static struct graph_node * copy_node (struct graph_node *node) { struct graph_node *new = new_node(node->type); new->children = NULL; new->is_start = node->is_start; new->end = NULL; new->text = node->text ? XSTRDUP(MTYPE_CMD_TOKENS, node->text) : NULL; new->value = node->value; new->min = node->min; new->max = node->max; new->element = node->element ? copy_cmd_element(node->element) : NULL; new->arg = node->arg ? XSTRDUP(MTYPE_CMD_TOKENS, node->arg) : NULL; new->refs = 0; return new; } /* Linked list data deletion callback */ static void delete_nodelist (void *node) { free_node ((struct graph_node *) node); } /* token level matching functions */ static enum match_type match_token (struct graph_node *node, char *token) { switch (node->type) { case WORD_GN: return match_word (node, token); case IPV4_GN: return match_ipv4 (token); case IPV4_PREFIX_GN: return match_ipv4_prefix (token); case IPV6_GN: return match_ipv6 (token); case IPV6_PREFIX_GN: return match_ipv6_prefix (token); case RANGE_GN: return match_range (node, token); case NUMBER_GN: return match_number (node, token); case VARIABLE_GN: return match_variable (node, token); case END_GN: default: return no_match; } } #define IPV4_ADDR_STR "0123456789." #define IPV4_PREFIX_STR "0123456789./" static enum match_type match_ipv4 (const char *str) { const char *sp; int dots = 0, nums = 0; char buf[4]; if (str == NULL) return partly_match; for (;;) { memset (buf, 0, sizeof (buf)); sp = str; while (*str != '\0') { if (*str == '.') { if (dots >= 3) return no_match; if (*(str + 1) == '.') return no_match; if (*(str + 1) == '\0') return partly_match; dots++; break; } if (!isdigit ((int) *str)) return no_match; str++; } if (str - sp > 3) return no_match; strncpy (buf, sp, str - sp); if (atoi (buf) > 255) return no_match; nums++; if (*str == '\0') break; str++; } if (nums < 4) return partly_match; return exact_match; } static enum match_type match_ipv4_prefix (const char *str) { const char *sp; int dots = 0; char buf[4]; if (str == NULL) return partly_match; for (;;) { memset (buf, 0, sizeof (buf)); sp = str; while (*str != '\0' && *str != '/') { if (*str == '.') { if (dots == 3) return no_match; if (*(str + 1) == '.' || *(str + 1) == '/') return no_match; if (*(str + 1) == '\0') return partly_match; dots++; break; } if (!isdigit ((int) *str)) return no_match; str++; } if (str - sp > 3) return no_match; strncpy (buf, sp, str - sp); if (atoi (buf) > 255) return no_match; if (dots == 3) { if (*str == '/') { if (*(str + 1) == '\0') return partly_match; str++; break; } else if (*str == '\0') return partly_match; } if (*str == '\0') return partly_match; str++; } sp = str; while (*str != '\0') { if (!isdigit ((int) *str)) return no_match; str++; } if (atoi (sp) > 32) return no_match; return exact_match; } #ifdef HAVE_IPV6 #define IPV6_ADDR_STR "0123456789abcdefABCDEF:." #define IPV6_PREFIX_STR "0123456789abcdefABCDEF:./" static enum match_type match_ipv6 (const char *str) { struct sockaddr_in6 sin6_dummy; int ret; if (str == NULL) return partly_match; if (strspn (str, IPV6_ADDR_STR) != strlen (str)) return no_match; ret = inet_pton(AF_INET6, str, &sin6_dummy.sin6_addr); if (ret == 1) return exact_match; return no_match; } static enum match_type match_ipv6_prefix (const char *str) { struct sockaddr_in6 sin6_dummy; const char *delim = "/\0"; char *dupe, *prefix, *mask, *context, *endptr; int nmask = -1; if (str == NULL) return partly_match; if (strspn (str, IPV6_PREFIX_STR) != strlen (str)) return no_match; /* tokenize to address + mask */ dupe = XMALLOC(MTYPE_TMP, strlen(str)+1); strncpy(dupe, str, strlen(str)+1); prefix = strtok_r(dupe, delim, &context); mask = strtok_r(NULL, delim, &context); if (!mask) return partly_match; /* validate prefix */ if (inet_pton(AF_INET6, prefix, &sin6_dummy.sin6_addr) != 1) return no_match; /* validate mask */ nmask = strtoimax (mask, &endptr, 10); if (*endptr != '\0' || nmask < 0 || nmask > 128) return no_match; XFREE(MTYPE_TMP, dupe); return exact_match; } #endif static enum match_type match_range (struct graph_node *rangenode, const char *str) { char *endptr = NULL; long long val; if (str == NULL) return 1; val = strtoll (str, &endptr, 10); if (*endptr != '\0') return 0; if (val < rangenode->min || val > rangenode->max) return no_match; else return exact_match; } static enum match_type match_word(struct graph_node *wordnode, const char *word) { // if the passed token is null or 0 length, partly match if (!word || !strlen(word)) return partly_match; // if the passed token is strictly a prefix of the full word, partly match if (strlen(word) < strlen(wordnode->text)) return !strncmp(wordnode->text, word, strlen(word)) ? partly_match : no_match; // if they are the same length and exactly equal, exact match else if (strlen(word) == strlen(wordnode->text)) return !strncmp(wordnode->text, word, strlen(word)) ? exact_match : no_match; return no_match; } static enum match_type match_number(struct graph_node *numnode, const char *word) { if (!strcmp("\0", word)) return no_match; char *endptr; long long num = strtoll (word, &endptr, 10); if (endptr != '\0') return no_match; return num == numnode->value ? exact_match : no_match; } #define VARIABLE_ALPHABET "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890:" static enum match_type match_variable(struct graph_node *varnode, const char *word) { return strlen(word) == strspn(word, VARIABLE_ALPHABET) ? exact_match : no_match; }