#include "command_match.h" #include "command_parse.h" #include #include "memory.h" /* matcher helper prototypes */ static int add_nexthops(struct list *, struct graph_node *); static struct list * match_build_argv_r (struct graph_node *, vector, unsigned int); static int score_precedence (struct graph_node *); /* token matcher prototypes */ static enum match_type match_ipv4 (const char *); static enum match_type match_ipv4_prefix (const char *); static enum match_type match_ipv6 (const char *); static enum match_type match_ipv6_prefix (const char *); static enum match_type match_range (struct graph_node *, const char *str); static enum match_type match_word (struct graph_node *, enum filter_type, const char *); static enum match_type match_number (struct graph_node *, const char *); static enum match_type match_variable (struct graph_node *, const char *); static enum match_type match_token (struct graph_node *, char *, enum filter_type); /* matching functions */ struct cmd_element * match_command (struct graph_node *start, const char *line, enum filter_type filter) { // get all possible completions struct list *completions = match_command_complete (start, line, filter); // one of them should be END_GN if this command matches struct graph_node *gn; struct listnode *node; for (ALL_LIST_ELEMENTS_RO(completions,node,gn)) { if (gn->type == END_GN) break; gn = NULL; } return gn ? gn->element : NULL; } struct list * match_command_complete (struct graph_node *start, const char *line, enum filter_type filter) { // vectorize command line vector vline = cmd_make_strvec (line); // pointer to next input token to match char *token; struct list *current = list_new(), // current nodes to match input token against *matched = list_new(), // current nodes that match the input token *next = list_new(); // possible next hops to current input token // pointers used for iterating lists struct graph_node *gn; struct listnode *node; // add all children of start node to list add_nexthops(next, start); unsigned int idx; for (idx = 0; idx < vector_active(vline) && next->count > 0; idx++) { list_free (current); current = next; next = list_new(); token = vector_slot(vline, idx); list_delete_all_node(matched); for (ALL_LIST_ELEMENTS_RO(current,node,gn)) { if (match_token(gn, token, filter) == exact_match) { listnode_add(matched, gn); add_nexthops(next, gn); } } } /* Variable summary * ----------------------------------------------------------------- * token = last input token processed * idx = index in `command` of last token processed * current = set of all transitions from the previous input token * matched = set of all nodes reachable with current input * next = set of all nodes reachable from all nodes in `matched` */ list_free (current); list_free (matched); cmd_free_strvec(vline); return next; } /** * Adds all children that are reachable by one parser hop * to the given list. NUL_GN, SELECTOR_GN, and OPTION_GN * nodes are treated as transparent. * * @param[out] l the list to add the children to * @param[in] node the node to get the children of * @return the number of children added to the list */ static int add_nexthops(struct list *l, struct graph_node *node) { int added = 0; struct graph_node *child; for (unsigned int i = 0; i < vector_active(node->children); i++) { child = vector_slot(node->children, i); switch (child->type) { case OPTION_GN: case SELECTOR_GN: case NUL_GN: added += add_nexthops(l, child); break; default: listnode_add(l, child); added++; } } return added; } struct list * match_build_argv (const char *line, struct cmd_element *element) { struct list *argv = NULL; // parse command struct graph_node *start = new_node(NUL_GN); parse_command_format(start, element); vector vline = cmd_make_strvec (line); for (unsigned int i = 0; i < vector_active(start->children); i++) { // call recursive builder on each starting child argv = match_build_argv_r (vector_slot(start->children, i), vline, 0); // if any of them succeed, return their argv // since all command DFA's must begin with a word and these are deduplicated, // no need to check precedence if (argv) break; } return argv; } /** * Builds an argument list given a DFA and a matching input line. * This function should be passed the start node of the DFA, a matching * input line, and the index of the first input token in the input line. * * First the function determines if the node it is passed matches the * first token of input. If it does not, it returns NULL. If it does * match, then it saves the input token as the head of an argument list. * * The next step is to see if there is further input in the input line. * If there is not, the current node's children are searched to see if * any of them are leaves (type END_GN). If this is the case, then the * bottom of the recursion stack has been reached, and the argument list * (with one node) is returned. If it is not the case, NULL is returned, * indicating that there is no match for the input along this path. * * If there is further input, then the function recurses on each of the * current node's children, passing them the input line minus the token * that was just matched. For each child, the return value of the recursive * call is inspected. If it is null, then there is no match for the input along * the subgraph headed by that child. If it is not null, then there is at least * one input match in that subgraph (more on this in a moment). * * If a recursive call on a child returns a non-null value, then it has matched * the input given it on the subgraph that starts with that child. However, due * to the flexibility of the grammar, it is sometimes the case that two or more * child graphs match the same input (two or more of the recursive calls have * non-NULL return values). This is not a valid state, since only one * true match is possible. In order to resolve this conflict, the function * keeps a reference to the child node that most specifically matches the * input. This is done by assigning each node type a precedence. If a child is * found to match the remaining input, then the precedence values of the * current best-matching child and this new match are compared. The node with * higher precedence is kept, and the other match is discarded. Due to the * recursive nature of this function, it is only necessary to compare the * precedence of immediate children, since all subsequent children will already * have been disambiguated in this way. * * In the event that two children are found to match with the same precedence, * then this command is totally ambiguous (how did you even match it in the first * place?) and NULL is returned. * * The ultimate return value is an ordered linked list of nodes that comprise * the best match for the command, each with their `arg` fields pointing to the * matching token string. * * @param[out] start the start node. * @param[in] vline the vectorized input line. * @param[in] n the index of the first input token. Should be 0 for external * callers. */ static struct list * match_build_argv_r (struct graph_node *start, vector vline, unsigned int n) { // if we don't match this node, die if (match_token(start, vector_slot(vline, n), FILTER_STRICT) != exact_match) return NULL; // arg list for this subgraph struct list *argv = list_new(); // pointers for iterating linklist struct graph_node *gn; struct listnode *ln; // append current arg listnode_add(argv, start); // get all possible nexthops struct list *next = list_new(); add_nexthops(next, start); // if we're at the end of input, need END_GN or no match if (n+1 == vector_active (vline)) { for (ALL_LIST_ELEMENTS_RO(next,ln,gn)) { if (gn->type == END_GN) { list_delete (next); start->arg = XSTRDUP(MTYPE_CMD_TOKENS, vector_slot(vline, n)); if (start->type == VARIABLE_GN) fprintf(stderr, "Setting variable %s->arg with text %s\n", start->text, start->arg); return argv; } } list_free (next); return NULL; } // otherwise recurse on all nexthops struct list *bestmatch = NULL; for (ALL_LIST_ELEMENTS_RO(next,ln,gn)) { if (gn->type == END_GN) // skip END_GN since we aren't at end of input continue; // get the result of the next node for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t"); fprintf(stderr, "Recursing on node %s for token %s\n", gn->text, (char*) vector_slot(vline, n+1)); struct list *result = match_build_argv_r (gn, vline, n+1); // compare to our current best match, and save if it's better if (result) { if (bestmatch) { int currprec = score_precedence (listgetdata(listhead(bestmatch))); int rsltprec = score_precedence (gn); if (currprec < rsltprec) list_delete (result); if (currprec > rsltprec) { for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t"); fprintf(stderr, ">> Overwriting bestmatch with: %s\n", gn->text); list_delete (bestmatch); bestmatch = result; } if (currprec == rsltprec) { fprintf(stderr, ">> Ambiguous match. Abort.\n"); list_delete (bestmatch); list_delete (result); list_delete (argv); return NULL; } } else { bestmatch = result; for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t"); fprintf(stderr, ">> Setting bestmatch with: %s\n", gn->text); } } } if (bestmatch) { list_add_list(argv, bestmatch); list_delete (bestmatch); start->arg = XSTRDUP(MTYPE_CMD_TOKENS, vector_slot(vline, n)); if (start->type == VARIABLE_GN) fprintf(stderr, "Setting variable %s->arg with text %s\n", start->text, start->arg); return argv; } else { list_delete (argv); return NULL; } } /* matching utility functions */ static int score_precedence (struct graph_node *node) { switch (node->type) { // these should be mutually exclusive case IPV4_GN: case IPV4_PREFIX_GN: case IPV6_GN: case IPV6_PREFIX_GN: case RANGE_GN: case NUMBER_GN: return 1; case WORD_GN: return 2; case VARIABLE_GN: return 3; default: return 10; } } static enum match_type match_token (struct graph_node *node, char *token, enum filter_type filter) { switch (node->type) { case WORD_GN: return match_word (node, filter, token); case IPV4_GN: return match_ipv4 (token); case IPV4_PREFIX_GN: return match_ipv4_prefix (token); case IPV6_GN: return match_ipv6 (token); case IPV6_PREFIX_GN: return match_ipv6_prefix (token); case RANGE_GN: return match_range (node, token); case NUMBER_GN: return match_number (node, token); case VARIABLE_GN: return match_variable (node, token); case END_GN: default: return no_match; } } #define IPV4_ADDR_STR "0123456789." #define IPV4_PREFIX_STR "0123456789./" static enum match_type match_ipv4 (const char *str) { struct sockaddr_in sin_dummy; if (str == NULL) return partly_match; if (strspn (str, IPV4_ADDR_STR) != strlen (str)) return no_match; if (inet_pton(AF_INET, str, &sin_dummy.sin_addr) != 1) return no_match; return exact_match; } static enum match_type match_ipv4_prefix (const char *str) { struct sockaddr_in sin_dummy; const char *delim = "/\0"; char *dupe, *prefix, *mask, *context, *endptr; int nmask = -1; if (str == NULL) return partly_match; if (strspn (str, IPV4_PREFIX_STR) != strlen (str)) return no_match; /* tokenize to address + mask */ dupe = XMALLOC(MTYPE_TMP, strlen(str)+1); strncpy(dupe, str, strlen(str)+1); prefix = strtok_r(dupe, delim, &context); mask = strtok_r(NULL, delim, &context); if (!mask) return partly_match; /* validate prefix */ if (inet_pton(AF_INET, prefix, &sin_dummy.sin_addr) != 1) return no_match; /* validate mask */ nmask = strtol (mask, &endptr, 10); if (*endptr != '\0' || nmask < 0 || nmask > 32) return no_match; XFREE(MTYPE_TMP, dupe); return exact_match; } #ifdef HAVE_IPV6 #define IPV6_ADDR_STR "0123456789abcdefABCDEF:." #define IPV6_PREFIX_STR "0123456789abcdefABCDEF:./" static enum match_type match_ipv6 (const char *str) { struct sockaddr_in6 sin6_dummy; int ret; if (str == NULL) return partly_match; if (strspn (str, IPV6_ADDR_STR) != strlen (str)) return no_match; ret = inet_pton(AF_INET6, str, &sin6_dummy.sin6_addr); if (ret == 1) return exact_match; return no_match; } static enum match_type match_ipv6_prefix (const char *str) { struct sockaddr_in6 sin6_dummy; const char *delim = "/\0"; char *dupe, *prefix, *mask, *context, *endptr; int nmask = -1; if (str == NULL) return partly_match; if (strspn (str, IPV6_PREFIX_STR) != strlen (str)) return no_match; /* tokenize to address + mask */ dupe = XMALLOC(MTYPE_TMP, strlen(str)+1); strncpy(dupe, str, strlen(str)+1); prefix = strtok_r(dupe, delim, &context); mask = strtok_r(NULL, delim, &context); if (!mask) return partly_match; /* validate prefix */ if (inet_pton(AF_INET6, prefix, &sin6_dummy.sin6_addr) != 1) return no_match; /* validate mask */ nmask = strtol (mask, &endptr, 10); if (*endptr != '\0' || nmask < 0 || nmask > 128) return no_match; XFREE(MTYPE_TMP, dupe); return exact_match; } #endif static enum match_type match_range (struct graph_node *rangenode, const char *str) { char *endptr = NULL; signed long val; if (str == NULL) return 1; val = strtoll (str, &endptr, 10); if (*endptr != '\0') return 0; val = llabs(val); if (val < rangenode->min || val > rangenode->max) return no_match; else return exact_match; } static enum match_type match_word(struct graph_node *wordnode, enum filter_type filter, const char *word) { if (filter == FILTER_RELAXED) { if (!word || !strlen(word)) return partly_match; else if (!strncmp(wordnode->text, word, strlen(word))) return !strcmp(wordnode->text, word) ? exact_match : partly_match; else return no_match; } else { if (!word) return no_match; else return !strcmp(wordnode->text, word) ? exact_match : no_match; } } static enum match_type match_number(struct graph_node *numnode, const char *word) { if (!strcmp("\0", word)) return no_match; char *endptr; long num = strtol(word, &endptr, 10); if (endptr != '\0') return no_match; return num == numnode->value ? exact_match : no_match; } #define VARIABLE_ALPHABET "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890" static enum match_type match_variable(struct graph_node *varnode, const char *word) { return strlen(word) == strspn(word, VARIABLE_ALPHABET) && isalpha(word[0]) ? exact_match : no_match; }