a) Consolidate v4 and v6 versions of rib_match_multicast
b) Improve debug to show what we matched against as well.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
In `rib_link`, if is_zebra_import_table_enabled returns
true, `rib_queue_add` will not called, resulting in other
table route node never processed. This actually should not
be dependent on whether the route is imported.
In `rib_delnode`, if is_zebra_import_table_enabled returns
true, it will use `rib_unlink` instead of enqueuing the
route node for process. There is no reason that imported
route nodes should not be reprocessed. Long ago, the
behaviour was dependent on whether the route_entry comes
from a table other than main.
Signed-off-by: zyxwvu Shi <i@shiyc.cn>
Use the already existing mpls label code to store VNI
info for vxlan. VNI's are defined as labels just like mpls,
we should be using the same code for both.
This patch is the first part of that. Next we will need to
abstract the label code to not be so mpls specific. Currently
in this, we are just treating VXLAN as a label type and storing
it that way.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Currently `ip import-table 33` imports routes with
a distance of 15, as defined by zebra.h. zebra_rib.c
on the other hand believes the default value for the table
is 150. Let's make them agree with each other.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Use the defines for distance that are in zebra.h. We could
easily have a cluster where we don't agree with ourselves. So
let's convert zebra to use the defines in zebra.h
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
There existed the idea, from Volta, that a nexthop group would not have
the same nexthops installed -vs- what FRR actually sent down. The
dplane would notify you.
With the addition of 06525c4f99
the code was put behind a bit of a wall controlled the usage
of it.
The flag ROUTE_ENTRY_USE_FIB_NHG flag was being used
to control which set was being sent up to concerned parties
in nexthop tracking. Put this flag behind the wall and
do not necessarily set it when we receive a data plane
notification about a route being installed or not.
Fixes: #12706
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
After calling `rib_unlink` the variable `re` will point to `free()`d
memory, so don't attempt to use it after this point.
Found by Coverity Scan (Coverity ID 1519784)
Signed-off-by: Rafael Zalamena <rzalamena@opensourcerouting.org>
When FRR receives a route from the kernel about the route
offload success/failure. The metric being reported is not
going to be correct since we may not know it appropriately
at this point in time. If we can set the metric to something
appropriate.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When we are notified about the kernel about a route being offloaded
or not correctly set the distance.
Ticket: CM-33097
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The early route queue has a series of `struct zebra_early_route *`
entries. Zebra is treating this memory as just a `struct route entry`.
This is wrong. Correct this to free the memory correctly.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The wq->spec.errorfunc is never used in the code.
It's been in the code base since 2005 and I also
do not remember ever seeing it being called. No
workqueue process function ever returns error.
Since it's not used let's just remove it from the
code base.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Read from the fpm dplane a route update that will
include status about whether or not the asic was
successfull in offloading the route.
Have this data passed up to zebra for processing and disseminate
this data as appropriate.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Volta submitted notification changes for the dplane that had a
special use case for their system. Volta is no more, the code
is not being actively developed and from talking with ex-Volta
employees there is no current plans to even maintain this code.
Wrap the special handling of nexthops that their asic-dataplane
did in a bit of code to isolate it and allow for future removal,
as that I do not actually believe anyone else is using this code.
Add a CPP_NOTICE several years into the future that will tell us
to remove the code. If someone starts using it then they will
have to notice this variable to set it and hopefully they will
see my CPP_NOTICE to come talk to us. If this is being used then
we can just remove this wrapper.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
This allows Zebra to manage QDISC, TCLASS, TFILTER in kernel and do cleaning
jobs when it starts up.
Signed-off-by: Siger Yang <siger.yang@outlook.com>
When zebra receives routes from upper level protocols it decodes the
zapi message and places the routes on the metaQ for processing. Suppose
we have a route A that is already installed by some routing protocol.
And there is a route B that has a nexthop that will be recursively
resolved through A. Imagine if a route replace operation for A is
going to happen from an upper level protocol at about the same time
the route B is going to be installed into zebra. If these routes
are received, and decoded, at about the same time there exists a
chance that the metaQ will contain both of them at the same time.
If the order of installation is [ B, A ]. B will be resolved
correctly through A and installed, A will be processed and
re-installed into the FIB. If the nexthops have changed for
A then the owner of B should be notified about the change( and B
can do the correct action here and decide to withdraw or re-install ).
Now imagine if the order of routes received for processing on the
metaQ is [ A, B ]. A will be received, processed and sent to the
dataplane for reinstall. B will then be pulled off the metaQ and
fail the install since A is in a `not Installed` state.
Let's loosen the restriction in nexthop resolution for B such
that if the route we are dependent on is a route replace operation
allow the resolution to suceed. This requires zebra to track a new
route state( ROUTE_ENTRY_ROUTE_REPLACING ) that can be looked at
during nexthop resolution. I believe this is ok because A is
a route replace operation, which could result in this:
-route install failed, in which case B should be nht'ing and
will receive the nht failure and the upper level protocol should
remove B.
-route install succeeded, no nexthop changes. In this case
allowing the resolution for B is ok, NHT will not notify the upper
level protocol so no action is needed.
-route install succeeded, nexthops changes. In this case
allowing the resolution for B is ok, NHT will notify the upper
level protocol and it can decide to reinstall B or not based
upon it's own algorithm.
This set of events was found by the bgp_distance_change topotest(s).
Effectively the tests were looking for the bug ( A, B order in the metaQ )
as the `correct` state. When under very heavy load, the A, B ordering
caused A to just be installed and fully resolved in the dataplane before
B is gotten to( which is entirely possible ).
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Fix issue#11996.
When removing VRF ( all routes of this VRF), zebra mistakenly forgot to check
whether its routes are in update queue of FPM. So FPM module will crash during
its dealing with these routes, which are already freed.
Add a new HOOK `rib_shutdown()`, `zebra_rtable_node_cleanup()` will use it
to remove these routes from update queue of FPM module before freeing them.
Signed-off-by: anlan_cs <vic.lan@pica8.com>
Currently if an operator does this operation:
sharpd@eva ~/frr8> sudo ip nexthop add id 5000 via 192.168.119.44 dev enp39s0 ; sudo ip route add 10.0.0.1 nhid 5000
2022/06/30 08:52:40 ZEBRA: [ZHQK5-J9M1R] proto2zebra: Please add this protocol(0) to proper rt_netlink.c handling
2022/06/30 08:52:40 ZEBRA: [PS16P-365FK][EC 4043309076] Zebra failed to find the nexthop hash entry for id=5000 in a route entry
sharpd@eva ~/frr8> vtysh -c "show ip route 10.0.0.1"
Routing entry for 0.0.0.0/0
Known via "kernel", distance 0, metric 100, best
Last update 00:01:58 ago
* 192.168.119.1, via enp39s0
The route is dropped by zebra with no warnings. This is not good,
but unlikely to happen at this point in time. In order to fix
this issue route processing from inputs needs to happen after nexthop
group processing from inputs. This was not possible because
nexthop groups are placed on the metaQ. As such the above
nexthop group creation is placed on the metaQ for processing
in META_QUEUE_NHG. Then the route is read in and processed
immediately. The nexthop group is not found ( not processed yet!)
and the route is dropped in zebra.
Modify the code to have early route processing of validity
on the MetaQ. This preserves the order of operations.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Convert label processing that comes from zapi messages
into being handled by the meta-Q. This is because early
route processing is going to be moved to the meta-Q as
well and we will have a chicken and egg problem without
moving this code to be processed by the meta-Q.
Ordering of messages from ospf as an example:
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:48] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:48] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:48] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:48] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:62] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:43] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:61] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_ROUTE_ADD:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_MPLS_LABELS_REPLACE:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_MPLS_LABELS_REPLACE:0:66] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_MPLS_LABELS_REPLACE:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_MPLS_LABELS_REPLACE:0:47] comes from socket [36]
2022/08/09 08:55:52.740 ZEBRA: [YXG8K-BCYMV] zebra message[ZEBRA_MPLS_LABELS_REPLACE:0:47] comes from socket [36]
The ZEBRA_MPLS_LABELS_REPLACE immediately turn around and attempt to replace nexthop labels on routes that
were added. If the route add is placed on the metaQ, it will not exist yet and as such the label replace
will fail.
Modify the zebra code to take the label operations and place them on the metaQ as well.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
This commit implements necessary netlink encoders for traffic control
including QDISC, TCLASS and TFILTER, and adds basic dplane operations.
Co-authored-by: Stephen Worley <sworley@nvidia.com>
Signed-off-by: Siger Yang <siger.yang@outlook.com>
For whatever reason. ZEBRA_ROUTE_SYSTEM routes were being processed
last. Since a system route is just another kernel route type. Let's
just switch it to be processed the same time as kernel routes.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
There were more than a few places where the NHG meta
queue was not being explicitly called out. Let's
be consistent and use the same nomenclature as much
as possible when talking about metaQ's.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
convert:
frr_with_mutex(..)
to:
frr_with_mutex (..)
To make all our code agree with what clang-format is going to produce
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
New output example:
2022-07-03 09:40:29.310 [DEBG] zebra: [JF0K0-DVHWH] rib_meta_queue_add: (0:254):4.5.6.8/32: queued rn 0x55937f586ee0 into sub-queue Kernel Routes
2022-07-03 09:40:29.321 [DEBG] zebra: [HH6N2-PDCJS] default(0:254):4.5.6.8/32 rn 0x55937f586ee0 dequeued from sub-queue Kernel Routes
Let's make it a bit more human readable.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Instead of having global allow_delete move it to
where it belongs in the zrouter data structure.
Additionally show this data in `show zebra`
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The rib_process_dplane_results function was having each
sub function handler process the results and then
free the ctx. Lot's of functionality that needs to remember
to free the context. Let's just free it in the main loop.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Since the calling hook for old fpm is done in `rib_uninstall_kernel()`
inside, this calling place outside should be redundant. Just remove it.
Signed-off-by: anlan_cs <vic.lan@pica8.com>
Multipath route may have mixed nexthops of EVPN and IP unicast. Move
EVPN flag to nexthop to support such cases.
Signed-off-by: Xiao Liang <shaw.leon@gmail.com>
Add support for setting the protodown reason code.
829eb208e8
These patches handle all our netlink code for setting the reason.
For protodown reason we only set `frr` as the reason externally
but internally we have more descriptive reasoning available via
`show interface IFNAME`. The kernel only provides a bitwidth of 32
that all userspace programs have to share so this makes the most sense.
Since this is new functionality, it needs to be added to the dplane
pthread instead. So these patches, also move the protodown setting we
were doing before into the dplane pthread. For this, we abstract it a
bit more to make it a general interface LINK update dplane API. This
API can be expanded to support gernal link creation/updating when/if
someone ever adds that code.
We also move a more common entrypoint for evpn-mh and from zapi clients
like vrrpd. They both call common code now to set our internal flags
for protodown and protodown reason.
Also add debugging code for dumping netlink packets with
protodown/protodown_reason.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
FRR will crash when the re->type is a ZEBRA_ROUTE_ALL and it
is inserted into the meta-queue. Let's just put some basic
code in place to prevent a crash from happening. No routing
protocol should be using ZEBRA_ROUTE_ALL as a value but
bugs do happen. Let's just accept the weird route type
gracefully and move on.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Use the dataplane to query and read interface NETCONF data;
add netconf-oriented data to the dplane context object, and
add accessors for it. Add handler for incoming update
processing.
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
When using wait for install there exists situations where
zebra will issue several route change operations to the kernel
but end up in a state where we shouldn't be at the end
due to extra data being received. Example:
a) zebra receives from bgp a route change, installs sends the
route to the kernel.
b) zebra receives a route deletion from bgp, removes the
struct route entry and then sends to the kernel a deletion.
c) zebra receives an asynchronous notification that (a) succeeded
but we treat this as a new route.
This is the ships in the night problem. In this case if we receive
notification from the kernel about a route that we know nothing
about and we are not in startup and we are doing asic offload
then we can ignore this update.
Ticket: #2563300
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Current code treats all metaqueues as lists of route_node structures.
However, some queues contain other structures that need to be cleaned up
differently. Casting the elements of those queues to struct route_node
and dereferencing them leads to a crash. The crash may be seen when
executing bgp_multi_vrf_topo2.
Fix the code by using the proper list element types.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
The name 'opaque' is a little general - call the route_entry
struct 're_opaque' to make it more specific.
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
Pass in the route_node that is under consideration
into route_notify_internal to allow calling functions
to reduce stack size as well as looking up data.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The dest_pfx was pretty much only ever used for
debug output and FRR already knows the rn. So
use that instead.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
the dest_p and src_p values were only ever used for
debugs and %pFX, when we already have the rn.
There is no need to do this lookup
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
FRR is passing around a bunch of data that is encapsulated
within the route node. Let's just pass that around instead.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
FRR is passing around a bunch of data that is encapsulated
within the route node. Let's just pass that around instead.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Topology:
IXIA-----(ens192)FRR(ens224)------iXIA
Configuration:
1. Create 8 sub-interfaces on ens192 under Default VRF and configure 8
EBGP session between FRR and IXIA.
2. Create 1000 sub-interfaces on ens224 under Default VRF and configure
1000 EBGP session between FRR and IXIA.
3. 2M prefixes distributed from Left side Ixia each with 8 ECMP path.
4. So in total, there are 2M prefixes * 8 ECMP = 16M prefixes entries
in RIB and FIB.
Issue:
Shut ens192 and ens224, this is taking 1hr 15 mins to clean up the routes.
Root Cause:
In the case of route deletion, if the particular route node is having
nht count = 0, we are going to the parent and doing nht evaluation,
which is not needed.
Fix:
If the deleted the route node is having nht count > 0, then do a nht
evaluation on the parent node.
Shut ens192 and ens224, it is taking 1 min to clean up the routes
with the fix.
Signed-off-by: Sarita Patra <saritap@vmware.com>
In some cases, zebra may install a nexthop-group id that is
different from the id of the nhe struct attached to a
route-entry. This happens for a singleton recursive nexthop,
for example, where a route is installed with the resolving
nexthop's id.
The installed value is the most useful value - that corresponds
to information in the kernel on linux/netlink platforms that
support nhgs. Display both values if they differ in ascii
output, and include both values in the json form.
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
We should always treat the VRF interface as a loopback. Currently, this
is not the case, because in some old pre-VRF code we use if_is_loopback
instead of if_is_loopback_or_vrf. To avoid any future problems, the
proposal is to rename if_is_loopback_or_vrf to if_is_loopback and use it
everywhere. if_is_loopback is renamed to if_is_loopback_exact in case
it's ever needed, but currently it's not used anywhere.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
There is a bit of an impedance mismatch in the sequence of events here.
Depending on the dplane behavior, the `ROUTE_ENTRY_SELECTED` bit will be
inconsistent for rib_process_result().
With an asynchronous dataplane:
0. rib_process() is called
1. rib_install_kernel() is called, dplane action is queued
2. rib_install_kernel() returns
3. rib_process() sets the SELECTED bit appropriately, returns
4. dplane is done, triggers rib_process_result()
5. SELECTED bit is seen in "after" state
(5a. NHT code looks at the SELECTED bit, works correctly.)
With a synchronous dataplane:
0. rib_process() is called
1. rib_install_kernel() is called, dplane action is executed
2. dplane (should) trigger rib_process_result()
3. SELECTED bit is seen in "before" state
(3a. NHT code looks at the SELECTED bit, fails.)
4. rib_install_kernel() returns
5. rib_process() sets the SELECTED bit appropriately, too late.
Essentially, poking the dataplane is a sequencing point where control is
handed over to the dplane. Control may or may not return immediately.
Doing /anything/ after triggering the dataplane is a recipe for odd race
conditions.
(FWIW, I'm not sure rib_process_result() is called correctly in the
synchronous case, but that's a separate problem.)
Unfortunately, this change might have some unforeseen side effects. I
haven't dug through the code to see if anything breaks. There
/shouldn't/ be anything looking at the SELECTED bit here, but who knows.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
rib_update() was mallocing memory then attempting to schedule
and if the schedule failed( it was already going to be run )
FRR would then free the memory. Fix this memory usage pattern
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
PIM is going to need to be able to send down the address it is
trying to resolve in the multicast rib. We need a way to signal
this to the end developer. Start the conversion by adding the
ability to have a safi. But only allow SAFI_UNICAST at the moment.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Read incoming interface address change notifications in the
dplane pthread; enqueue the events to the main pthread
for processing. This is netlink-only for now - the bsd
kernel socket path remains unchanged.
Signed-off-by: Mark Stapp <mjs.ietf@gmail.com>
When calling rib_add_multipath_nhe ensure that we have
well aligned return codes that mean something so that
interersted parties can properly handle the situation.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
There were a bunch of places where we converted the
route node to a prefix string via srcdest_rnode2str when
we should have been using %pRN in zebra_rib.c. Just
convert over the ones we should to use it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When we are calling rib_process and the route_node
in question has no dest, there is no work to do here
at all. As such we should just return before
attempting to do any other work. This is just a tiny bit
of simplification being done.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Move remote VTEP updates from immediate, inline processing
in their ZAPI message handlers to the main workqueue.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Enqueue incoming vxlan remote macip updates on the main
workqueue, instead of performing the updates immediately,
in-line.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Add workqueue subqueue for EVPN/VxLAN updates; migrate the
evpn route and remote ES processing from their ZAPI handlers
to the workqueue.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Since _rnode_zlog was wrapping zlog(), these messages weren't getting an
unique ID assigned through the xref mechanism. Replace macro with a
small extension that prints (almost) the same thing.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
This action is initiated by nhrp and has been stubbed when
moving to zebra. Now, a netlink request is forged to set
the link interface of a gre interface if that gre interface
does not have already a link interface.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Use the main zebra workqueue for daemon-owned NHGs, in addition
to processing kernel-owned NHGs. The zapi message processing
creates a temporary object that's enqueued to the workqueue,
then processed/installed as part of the workqueue processing.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
do not add a new route type, and consider 0 as a value meaning
that zebra should be the owner.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Instead of directly configuring the neighbor table after read from zapi
interface, a zebra dplane context is prepared to host the interface and
the family where the neighbor table is updated. Also, some other fields
are hosted: app_probes, ucast_probes, and mcast_probes. More information
on those fields can be found on ip-ntable configuration.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
EVPN neighbor operations were already done in the zebra dataplane
framework. Now that NHRP is able to use zebra to perform neighbor IP
operations (by programming link IP operations), handle this operation
under dataplane framework:
- assign two new operations NEIGH_IP_INSTALL and NEIGH_IP_DELETE; this
is reserved for GRE like interfaces:
example: ip neigh add A.B.C.D lladdr E.F.G.H
- use 'struct ipaddr' to store and encode the link ip address
- reuse dplane_neigh_info, and create an union with mac address
- reuse the protocol type and use it for neighbor operations; this
permits to store the daemon originating this neighbor operation.
a new route type is created: ZEBRA_ROUTE_NEIGH.
- the netlink level functions will handle a pointer, and a type; the
type indicates the family of the pointer: AF_INET or AF_INET6 if the
link type is an ip address, mac address otherwise.
- to keep backward compatibility with old queries, as no extension was
done, an option NEIGH_NO_EXTENSION has been put in place
- also, 2 new state flags are used: NUD_PERMANENT and NUD_FAILED.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
This one also needed a bit of shuffling around, but MTYPE_RE is the only
one left used across file boundaries now.
Signed-off-by: David Lamparter <equinox@diac24.net>
like it has been done for iptable contexts, a zebra dplane context is
created for each ipset/ipset entry event. The zebra_dplane_ctx job is
then enqueued and processed by separate thread. Like it has been done
for zebra_pbr_iptable context, the ipset and ipset entry contexts are
encapsulated into an union of structures in zebra_dplane_ctx.
There is a specificity in that when storing ipset_entry structure, there
was a backpointer pointer to the ipset structure that is necessary
to get some complementary information before calling the hook. The
proposal is to use an ipset_entry_info structure next to the ipset_entry,
in the zebra_dplane context. That information is used for ipset_entry
processing. The ipset name and the ipset type are the only fields
necessary.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
The iptable processing was not handled in remote dataplane, and was
directly processed by the thread in charge of zapi calls. Now that call
can be handled in the zebra_dplane separate thread. once a
zebra_dplane_ctx is allocated for iptable handling, the hook call is
performed later. Subsequently, a return code may be triggered to zclient
interface if any problem occurs when calling the hook call.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Neither tabs nor newlines are acceptable in syslog messages. They also
break line-based parsing of file logs.
Signed-off-by: David Lamparter <equinox@diac24.net>