lib/table: add route_table_get_next() and iterator

* lib/table.[ch]

    - Add a function (route_table_get_next()) to get the route_node in
      a tree that succeeds a given prefix in iteration order.

      This allows one to reliably walk nodes in a tree while allowing
      modifications, and is useful for achieving scale and
      performance. Other approaches are also possible -- the main plus
      point of this one is that it does not require any state about
      the walk to be maintained in the table data structures.

    - Add an iterator for walking the nodes in a tree. This introduces
      a new structure (route_table_iter_t) and the following main
      functions.

        route_table_iter_init()
        route_table_iter_pause()
        route_table_iter_next()
        route_table_iter_cleanup()

      The iterator normally uses node pointers and the existing
      route_next() function to walk nodes efficiently. When an
      iteration is 'paused' with route_table_iter_pause(), it stores
      the last prefix processed. The next call to
      route_table_iter_next() transparently invokes
      route_table_get_next() with the prefix to resume iteration.

  * bgpd/bgp_table.[ch]

    Add wrappers for the new table features described above.

  * tests/table_test.c

    Add tests for the new table code.

Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
This commit is contained in:
Avneesh Sachdev 2012-08-17 08:19:50 -07:00 committed by David Lamparter
parent 67174041d2
commit 28971c8cb1
6 changed files with 1045 additions and 1 deletions

View file

@ -67,6 +67,17 @@ struct bgp_node
#define BGP_NODE_PROCESS_SCHEDULED (1 << 0)
};
/*
* bgp_table_iter_t
*
* Structure that holds state for iterating over a bgp table.
*/
typedef struct bgp_table_iter_t_
{
struct bgp_table *table;
route_table_iter_t rt_iter;
} bgp_table_iter_t;
extern struct bgp_table *bgp_table_init (afi_t, safi_t);
extern void bgp_table_lock (struct bgp_table *);
extern void bgp_table_unlock (struct bgp_table *);
@ -274,4 +285,71 @@ bgp_table_count (const struct bgp_table *const table)
return route_table_count (table->route_table);
}
/*
* bgp_table_get_next
*/
static inline struct bgp_node *
bgp_table_get_next (const struct bgp_table *table, struct prefix *p)
{
return bgp_node_from_rnode (route_table_get_next (table->route_table, p));
}
/*
* bgp_table_iter_init
*/
static inline void
bgp_table_iter_init (bgp_table_iter_t * iter, struct bgp_table *table)
{
bgp_table_lock (table);
iter->table = table;
route_table_iter_init (&iter->rt_iter, table->route_table);
}
/*
* bgp_table_iter_next
*/
static inline struct bgp_node *
bgp_table_iter_next (bgp_table_iter_t * iter)
{
return bgp_node_from_rnode (route_table_iter_next (&iter->rt_iter));
}
/*
* bgp_table_iter_cleanup
*/
static inline void
bgp_table_iter_cleanup (bgp_table_iter_t * iter)
{
route_table_iter_cleanup (&iter->rt_iter);
bgp_table_unlock (iter->table);
iter->table = NULL;
}
/*
* bgp_table_iter_pause
*/
static inline void
bgp_table_iter_pause (bgp_table_iter_t * iter)
{
route_table_iter_pause (&iter->rt_iter);
}
/*
* bgp_table_iter_is_done
*/
static inline int
bgp_table_iter_is_done (bgp_table_iter_t * iter)
{
return route_table_iter_is_done (&iter->rt_iter);
}
/*
* bgp_table_iter_started
*/
static inline int
bgp_table_iter_started (bgp_table_iter_t * iter)
{
return route_table_iter_started (&iter->rt_iter);
}
#endif /* _QUAGGA_BGP_TABLE_H */

View file

@ -528,3 +528,285 @@ route_table_init (void)
{
return route_table_init_with_delegate (&default_delegate);
}
/**
* route_table_prefix_iter_cmp
*
* Compare two prefixes according to the order in which they appear in
* an iteration over a tree.
*
* @return -1 if p1 occurs before p2 (p1 < p2)
* 0 if the prefixes are identical (p1 == p2)
* +1 if p1 occurs after p2 (p1 > p2)
*/
int
route_table_prefix_iter_cmp (struct prefix *p1, struct prefix *p2)
{
struct prefix common_space;
struct prefix *common = &common_space;
if (p1->prefixlen <= p2->prefixlen)
{
if (prefix_match (p1, p2))
{
/*
* p1 contains p2, or is equal to it.
*/
return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
}
}
else
{
/*
* Check if p2 contains p1.
*/
if (prefix_match (p2, p1))
return 1;
}
route_common (p1, p2, common);
assert (common->prefixlen < p1->prefixlen);
assert (common->prefixlen < p2->prefixlen);
/*
* Both prefixes are longer than the common prefix.
*
* We need to check the bit after the common prefixlen to determine
* which one comes later.
*/
if (prefix_bit (&p1->u.prefix, common->prefixlen))
{
/*
* We branch to the right to get to p1 from the common prefix.
*/
assert (!prefix_bit (&p2->u.prefix, common->prefixlen));
return 1;
}
/*
* We branch to the right to get to p2 from the common prefix.
*/
assert (prefix_bit (&p2->u.prefix, common->prefixlen));
return -1;
}
/*
* route_get_subtree_next
*
* Helper function that returns the first node that follows the nodes
* in the sub-tree under 'node' in iteration order.
*/
static struct route_node *
route_get_subtree_next (struct route_node *node)
{
while (node->parent)
{
if (node->parent->l_left == node && node->parent->l_right)
return node->parent->l_right;
node = node->parent;
}
return NULL;
}
/**
* route_table_get_next_internal
*
* Helper function to find the node that occurs after the given prefix in
* order of iteration.
*
* @see route_table_get_next
*/
static struct route_node *
route_table_get_next_internal (const struct route_table *table,
struct prefix *p)
{
struct route_node *node, *tmp_node;
u_char prefixlen;
int cmp;
prefixlen = p->prefixlen;
node = table->top;
while (node)
{
int match;
if (node->p.prefixlen < p->prefixlen)
match = prefix_match (&node->p, p);
else
match = prefix_match (p, &node->p);
if (match)
{
if (node->p.prefixlen == p->prefixlen)
{
/*
* The prefix p exists in the tree, just return the next
* node.
*/
route_lock_node (node);
node = route_next (node);
if (node)
route_unlock_node (node);
return (node);
}
if (node->p.prefixlen > p->prefixlen)
{
/*
* Node is in the subtree of p, and hence greater than p.
*/
return node;
}
/*
* p is in the sub-tree under node.
*/
tmp_node = node->link[prefix_bit (&p->u.prefix, node->p.prefixlen)];
if (tmp_node)
{
node = tmp_node;
continue;
}
/*
* There are no nodes in the direction where p should be. If
* node has a right child, then it must be greater than p.
*/
if (node->l_right)
return node->l_right;
/*
* No more children to follow, go upwards looking for the next
* node.
*/
return route_get_subtree_next (node);
}
/*
* Neither node prefix nor 'p' contains the other.
*/
cmp = route_table_prefix_iter_cmp (&node->p, p);
if (cmp > 0)
{
/*
* Node follows p in iteration order. Return it.
*/
return node;
}
assert (cmp < 0);
/*
* Node and the subtree under it come before prefix p in
* iteration order. Prefix p and its sub-tree are not present in
* the tree. Go upwards and find the first node that follows the
* subtree. That node will also succeed p.
*/
return route_get_subtree_next (node);
}
return NULL;
}
/**
* route_table_get_next
*
* Find the node that occurs after the given prefix in order of
* iteration.
*/
struct route_node *
route_table_get_next (const struct route_table *table, struct prefix *p)
{
struct route_node *node;
node = route_table_get_next_internal (table, p);
if (node)
{
assert (route_table_prefix_iter_cmp (&node->p, p) > 0);
route_lock_node (node);
}
return node;
}
/*
* route_table_iter_init
*/
void
route_table_iter_init (route_table_iter_t * iter, struct route_table *table)
{
memset (iter, 0, sizeof (*iter));
iter->state = RT_ITER_STATE_INIT;
iter->table = table;
}
/*
* route_table_iter_pause
*
* Pause an iteration over the table. This allows the iteration to be
* resumed point after arbitrary additions/deletions from the table.
* An iteration can be resumed by just calling route_table_iter_next()
* on the iterator.
*/
void
route_table_iter_pause (route_table_iter_t * iter)
{
switch (iter->state)
{
case RT_ITER_STATE_INIT:
case RT_ITER_STATE_PAUSED:
case RT_ITER_STATE_DONE:
return;
case RT_ITER_STATE_ITERATING:
/*
* Save the prefix that we are currently at. The next call to
* route_table_iter_next() will return the node after this prefix
* in the tree.
*/
prefix_copy (&iter->pause_prefix, &iter->current->p);
route_unlock_node (iter->current);
iter->current = NULL;
iter->state = RT_ITER_STATE_PAUSED;
return;
default:
assert (0);
}
}
/*
* route_table_iter_cleanup
*
* Release any resources held by the iterator.
*/
void
route_table_iter_cleanup (route_table_iter_t * iter)
{
if (iter->state == RT_ITER_STATE_ITERATING)
{
route_unlock_node (iter->current);
iter->current = NULL;
}
assert (!iter->current);
/*
* Set the state to RT_ITER_STATE_DONE to make any
* route_table_iter_next() calls on this iterator return NULL.
*/
iter->state = RT_ITER_STATE_DONE;
}

View file

@ -98,6 +98,43 @@ struct route_node
#define l_right link[1]
};
typedef struct route_table_iter_t_ route_table_iter_t;
typedef enum
{
RT_ITER_STATE_INIT,
RT_ITER_STATE_ITERATING,
RT_ITER_STATE_PAUSED,
RT_ITER_STATE_DONE
} route_table_iter_state_t;
/*
* route_table_iter_t
*
* Structure that holds state for iterating over a route table.
*/
struct route_table_iter_t_
{
route_table_iter_state_t state;
/*
* Routing table that we are iterating over. The caller must ensure
* that that table outlives the iterator.
*/
struct route_table *table;
/*
* The node that the iterator is currently on.
*/
struct route_node *current;
/*
* The last prefix that the iterator processed before it was paused.
*/
struct prefix pause_prefix;
};
/* Prototypes. */
extern struct route_table *route_table_init (void);
@ -125,4 +162,93 @@ extern struct route_node *route_node_match_ipv6 (const struct route_table *,
#endif /* HAVE_IPV6 */
extern unsigned long route_table_count (const struct route_table *);
extern struct route_node *
route_table_get_next (const struct route_table *table, struct prefix *p);
extern int
route_table_prefix_iter_cmp (struct prefix *p1, struct prefix *p2);
/*
* Iterator functions.
*/
extern void route_table_iter_init (route_table_iter_t *iter,
struct route_table *table);
extern void route_table_iter_pause (route_table_iter_t *iter);
extern void route_table_iter_cleanup (route_table_iter_t *iter);
/*
* Inline functions.
*/
/*
* route_table_iter_next
*
* Get the next node in the tree.
*/
static inline struct route_node *
route_table_iter_next (route_table_iter_t * iter)
{
struct route_node *node;
switch (iter->state)
{
case RT_ITER_STATE_INIT:
/*
* We're just starting the iteration.
*/
node = route_top (iter->table);
break;
case RT_ITER_STATE_ITERATING:
node = route_next (iter->current);
break;
case RT_ITER_STATE_PAUSED:
/*
* Start with the node following pause_prefix.
*/
node = route_table_get_next (iter->table, &iter->pause_prefix);
break;
case RT_ITER_STATE_DONE:
return NULL;
default:
assert (0);
}
iter->current = node;
if (node)
iter->state = RT_ITER_STATE_ITERATING;
else
iter->state = RT_ITER_STATE_DONE;
return node;
}
/*
* route_table_iter_is_done
*
* Returns TRUE if the iteration is complete.
*/
static inline int
route_table_iter_is_done (route_table_iter_t *iter)
{
return iter->state == RT_ITER_STATE_DONE;
}
/*
* route_table_iter_started
*
* Returns TRUE if this iterator has started iterating over the tree.
*/
static inline int
route_table_iter_started (route_table_iter_t *iter)
{
return iter->state != RT_ITER_STATE_INIT;
}
#endif /* _ZEBRA_TABLE_H */

1
tests/.gitignore vendored
View file

@ -8,6 +8,7 @@ TAGS
*.lo
*.la
*.libs
tabletest
testsig
.arch-inventory
.arch-ids

View file

@ -6,7 +6,7 @@ AM_LDFLAGS = $(PILDFLAGS)
noinst_PROGRAMS = testsig testbuffer testmemory heavy heavywq heavythread \
aspathtest testprivs teststream testbgpcap ecommtest \
testbgpmpattr testchecksum testbgpmpath
testbgpmpattr testchecksum testbgpmpath tabletest
testsig_SOURCES = test-sig.c
testbuffer_SOURCES = test-buffer.c
@ -22,6 +22,7 @@ ecommtest_SOURCES = ecommunity_test.c
testbgpmpattr_SOURCES = bgp_mp_attr_test.c
testchecksum_SOURCES = test-checksum.c
testbgpmpath_SOURCES = bgp_mpath_test.c
tabletest_SOURCES = table_test.c
testsig_LDADD = ../lib/libzebra.la @LIBCAP@
testbuffer_LDADD = ../lib/libzebra.la @LIBCAP@
@ -37,3 +38,4 @@ ecommtest_LDADD = ../lib/libzebra.la @LIBCAP@ -lm ../bgpd/libbgp.a
testbgpmpattr_LDADD = ../lib/libzebra.la @LIBCAP@ -lm ../bgpd/libbgp.a
testchecksum_LDADD = ../lib/libzebra.la @LIBCAP@
testbgpmpath_LDADD = ../lib/libzebra.la @LIBCAP@ -lm ../bgpd/libbgp.a
tabletest_LDADD = ../lib/libzebra.la @LIBCAP@ -lm

555
tests/table_test.c Normal file
View file

@ -0,0 +1,555 @@
/* $QuaggaId: Format:%an, %ai, %h$ $
*
* Routing table test
* Copyright (C) 2012 OSR.
*
* This file is part of Quagga
*
* Quagga is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* Quagga is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Quagga; see the file COPYING. If not, write to the Free
* Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <zebra.h>
#include "prefix.h"
#include "table.h"
/*
* test_node_t
*
* Information that is kept for each node in the radix tree.
*/
typedef struct test_node_t_
{
/*
* Human readable representation of the string. Allocated using
* malloc()/dup().
*/
char *prefix_str;
} test_node_t;
struct thread_master *master;
/*
* add_node
*
* Add the given prefix (passed in as a string) to the given table.
*/
static void
add_node (struct route_table *table, const char *prefix_str)
{
struct prefix_ipv4 p;
test_node_t *node;
struct route_node *rn;
assert (prefix_str);
if (str2prefix_ipv4 (prefix_str, &p) <= 0)
{
assert (0);
}
rn = route_node_get (table, (struct prefix *) &p);
if (rn->info)
{
assert (0);
return;
}
node = malloc (sizeof (test_node_t));
assert (node);
node->prefix_str = strdup (prefix_str);
assert (node->prefix_str);
rn->info = node;
}
/*
* add_nodes
*
* Convenience function to add a bunch of nodes together.
*
* The arguments must be prefixes in string format, with a NULL as the
* last argument.
*/
static void
add_nodes (struct route_table *table, ...)
{
va_list arglist;
char *prefix;
va_start (arglist, table);
prefix = va_arg (arglist, char *);
while (prefix)
{
add_node (table, prefix);
prefix = va_arg (arglist, char *);
}
va_end (arglist);
}
/*
* print_subtree
*
* Recursive function to print a route node and its children.
*
* @see print_table
*/
static void
print_subtree (struct route_node *rn, const char *legend, int indent_level)
{
char buf[INET_ADDRSTRLEN + 4];
int i;
/*
* Print this node first.
*/
for (i = 0; i < indent_level; i++)
{
printf (" ");
}
prefix2str (&rn->p, buf, sizeof (buf));
printf ("%s: %s", legend, buf);
if (!rn->info)
{
printf (" (internal)");
}
printf ("\n");
if (rn->l_left)
{
print_subtree (rn->l_left, "Left", indent_level + 1);
}
if (rn->l_right)
{
print_subtree (rn->l_right, "Right", indent_level + 1);
}
}
/*
* print_table
*
* Function that prints out the internal structure of a route table.
*/
static void
print_table (struct route_table *table)
{
struct route_node *rn;
rn = table->top;
if (!rn)
{
printf ("<Empty Table>\n");
return;
}
print_subtree (rn, "Top", 0);
}
/*
* clear_table
*
* Remove all nodes from the given table.
*/
static void
clear_table (struct route_table *table)
{
route_table_iter_t iter;
struct route_node *rn;
test_node_t *node;
route_table_iter_init (&iter, table);
while ((rn = route_table_iter_next (&iter)))
{
node = rn->info;
if (!node)
{
continue;
}
rn->info = NULL;
route_unlock_node (rn);
free (node->prefix_str);
free (node);
}
route_table_iter_cleanup (&iter);
assert (table->top == NULL);
}
/*
* verify_next_by_iterating
*
* Iterate over the tree to make sure that the first prefix after
* target_pfx is the expected one. Note that target_pfx may not be
* present in the tree.
*/
static void
verify_next_by_iterating (struct route_table *table,
struct prefix *target_pfx, struct prefix *next_pfx)
{
route_table_iter_t iter;
struct route_node *rn;
route_table_iter_init (&iter, table);
while ((rn = route_table_iter_next (&iter)))
{
if (route_table_prefix_iter_cmp (&rn->p, target_pfx) > 0)
{
assert (!prefix_cmp (&rn->p, next_pfx));
break;
}
}
if (!rn)
{
assert (!next_pfx);
}
route_table_iter_cleanup (&iter);
}
/*
* verify_next
*
* Verifies that route_table_get_next() returns the expected result
* (result) for the prefix string 'target'.
*/
static void
verify_next (struct route_table *table, const char *target, const char *next)
{
struct prefix_ipv4 target_pfx, next_pfx;
struct route_node *rn;
char result_buf[INET_ADDRSTRLEN + 4];
if (str2prefix_ipv4 (target, &target_pfx) <= 0)
{
assert (0);
}
rn = route_table_get_next (table, (struct prefix *) &target_pfx);
if (rn)
{
prefix2str (&rn->p, result_buf, sizeof (result_buf));
}
else
{
snprintf (result_buf, sizeof (result_buf), "(Null)");
}
printf ("\n");
print_table (table);
printf ("Verifying successor of %s. Expected: %s, Result: %s\n", target,
next ? next : "(Null)", result_buf);
if (!rn)
{
assert (!next);
verify_next_by_iterating (table, (struct prefix *) &target_pfx, NULL);
return;
}
assert (next);
if (str2prefix_ipv4 (next, &next_pfx) <= 0)
{
assert (0);
}
if (prefix_cmp (&rn->p, (struct prefix *) &next_pfx))
{
assert (0);
}
route_unlock_node (rn);
verify_next_by_iterating (table, (struct prefix *) &target_pfx,
(struct prefix *) &next_pfx);
}
/*
* test_get_next
*/
static void
test_get_next (void)
{
struct route_table *table;
printf ("\n\nTesting route_table_get_next()\n");
table = route_table_init ();
/*
* Target exists in tree, but has no successor.
*/
add_nodes (table, "1.0.1.0/24", NULL);
verify_next (table, "1.0.1.0/24", NULL);
clear_table (table);
/*
* Target exists in tree, and there is a node in its left subtree.
*/
add_nodes (table, "1.0.1.0/24", "1.0.1.0/25", NULL);
verify_next (table, "1.0.1.0/24", "1.0.1.0/25");
clear_table (table);
/*
* Target exists in tree, and there is a node in its right subtree.
*/
add_nodes (table, "1.0.1.0/24", "1.0.1.128/25", NULL);
verify_next (table, "1.0.1.0/24", "1.0.1.128/25");
clear_table (table);
/*
* Target exists in the tree, next node is outside subtree.
*/
add_nodes (table, "1.0.1.0/24", "1.1.0.0/16", NULL);
verify_next (table, "1.0.1.0/24", "1.1.0.0/16");
clear_table (table);
/*
* The target node does not exist in the tree for all the test cases
* below this point.
*/
/*
* There is no successor in the tree.
*/
add_nodes (table, "1.0.0.0/16", NULL);
verify_next (table, "1.0.1.0/24", NULL);
clear_table (table);
/*
* There exists a node that would be in the target's left subtree.
*/
add_nodes (table, "1.0.0.0/16", "1.0.1.0/25", NULL);
verify_next (table, "1.0.1.0/24", "1.0.1.0/25");
clear_table (table);
/*
* There exists a node would be in the target's right subtree.
*/
add_nodes (table, "1.0.0.0/16", "1.0.1.128/25", NULL);
verify_next (table, "1.0.1.0/24", "1.0.1.128/25");
clear_table (table);
/*
* A search for the target reaches a node where there are no child
* nodes in the direction of the target (left), but the node has a
* right child.
*/
add_nodes (table, "1.0.0.0/16", "1.0.128.0/17", NULL);
verify_next (table, "1.0.0.0/17", "1.0.128.0/17");
clear_table (table);
/*
* A search for the target reaches a node with no children. We have
* to go upwards in the tree to find a successor.
*/
add_nodes (table, "1.0.0.0/16", "1.0.0.0/24", "1.0.1.0/24",
"1.0.128.0/17", NULL);
verify_next (table, "1.0.1.0/25", "1.0.128.0/17");
clear_table (table);
/*
* A search for the target reaches a node where neither the node nor
* the target prefix contain each other.
*
* In first case below the node succeeds the target.
*
* In the second case, the node comes before the target, so we have
* to go up the tree looking for a successor.
*/
add_nodes (table, "1.0.0.0/16", "1.0.1.0/24", NULL);
verify_next (table, "1.0.0.0/24", "1.0.1.0/24");
clear_table (table);
add_nodes (table, "1.0.0.0/16", "1.0.0.0/24", "1.0.1.0/25",
"1.0.128.0/17", NULL);
verify_next (table, "1.0.1.128/25", "1.0.128.0/17");
clear_table (table);
route_table_finish (table);
}
/*
* verify_prefix_iter_cmp
*/
static void
verify_prefix_iter_cmp (const char *p1, const char *p2, int exp_result)
{
struct prefix_ipv4 p1_pfx, p2_pfx;
int result;
if (str2prefix_ipv4 (p1, &p1_pfx) <= 0)
{
assert (0);
}
if (str2prefix_ipv4 (p2, &p2_pfx) <= 0)
{
assert (0);
}
result = route_table_prefix_iter_cmp ((struct prefix *) &p1_pfx,
(struct prefix *) &p2_pfx);
printf ("Verifying cmp(%s, %s) returns %d\n", p1, p2, exp_result);
assert (exp_result == result);
/*
* Also check the reverse comparision.
*/
result = route_table_prefix_iter_cmp ((struct prefix *) &p2_pfx,
(struct prefix *) &p1_pfx);
if (exp_result)
{
exp_result = -exp_result;
}
printf ("Verifying cmp(%s, %s) returns %d\n", p1, p2, exp_result);
assert (result == exp_result);
}
/*
* test_prefix_iter_cmp
*
* Tests comparision of prefixes according to order of iteration.
*/
static void
test_prefix_iter_cmp ()
{
printf ("\n\nTesting route_table_prefix_iter_cmp()\n");
verify_prefix_iter_cmp ("1.0.0.0/8", "1.0.0.0/8", 0);
verify_prefix_iter_cmp ("1.0.0.0/8", "1.0.0.0/16", -1);
verify_prefix_iter_cmp ("1.0.0.0/16", "1.128.0.0/16", -1);
}
/*
* verify_iter_with_pause
*
* Iterates over a tree using two methods: 'normal' iteration, and an
* iterator that pauses at each node. Verifies that the two methods
* yield the same results.
*/
static void
verify_iter_with_pause (struct route_table *table)
{
unsigned long num_nodes;
struct route_node *rn, *iter_rn;
route_table_iter_t iter_space;
route_table_iter_t *iter = &iter_space;
route_table_iter_init (iter, table);
num_nodes = 0;
for (rn = route_top (table); rn; rn = route_next (rn))
{
num_nodes++;
route_table_iter_pause (iter);
assert (iter->current == NULL);
if (route_table_iter_started (iter))
{
assert (iter->state == RT_ITER_STATE_PAUSED);
}
else
{
assert (rn == table->top);
assert (iter->state == RT_ITER_STATE_INIT);
}
iter_rn = route_table_iter_next (iter);
/*
* Make sure both iterations return the same node.
*/
assert (rn == iter_rn);
}
assert (num_nodes == route_table_count (table));
route_table_iter_pause (iter);
iter_rn = route_table_iter_next (iter);
assert (iter_rn == NULL);
assert (iter->state == RT_ITER_STATE_DONE);
assert (route_table_iter_next (iter) == NULL);
assert (iter->state == RT_ITER_STATE_DONE);
route_table_iter_cleanup (iter);
print_table (table);
printf ("Verified pausing iteration on tree with %lu nodes\n", num_nodes);
}
/*
* test_iter_pause
*/
static void
test_iter_pause (void)
{
struct route_table *table;
int i, num_prefixes;
const char *prefixes[] = {
"1.0.1.0/24",
"1.0.1.0/25",
"1.0.1.128/25",
"1.0.2.0/24",
"2.0.0.0/8"
};
num_prefixes = sizeof (prefixes) / sizeof (prefixes[0]);
printf ("\n\nTesting that route_table_iter_pause() works as expected\n");
table = route_table_init ();
for (i = 0; i < num_prefixes; i++)
{
add_nodes (table, prefixes[i], NULL);
}
verify_iter_with_pause (table);
clear_table (table);
route_table_finish (table);
}
/*
* run_tests
*/
static void
run_tests (void)
{
test_prefix_iter_cmp ();
test_get_next ();
test_iter_pause ();
}
/*
* main
*/
int
main (void)
{
run_tests ();
}