frr/bgpd/bgp_zebra.c

3193 lines
81 KiB
C
Raw Normal View History

2002-12-13 21:15:29 +01:00
/* zebra client
* Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
2002-12-13 21:15:29 +01:00
#include <zebra.h>
#include "command.h"
#include "stream.h"
#include "network.h"
#include "prefix.h"
#include "log.h"
#include "sockunion.h"
#include "zclient.h"
#include "routemap.h"
#include "thread.h"
#include "queue.h"
#include "memory.h"
#include "lib/json.h"
bfd: Fix for missing BFD client regs/deregs from quagga clients Ticket: CM-11256 Signed-off-by: Radhika Mahankali <radhika@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Kanna Rajagopal <kanna@cumulusnetworks.com> Testing: Unit, PTM smoke, OSPF smoke, BGP Smoke Issue: BFD client registrations are not being sent to PTM from BGP/OSPF clients when the quagga clients have no BFD configuration. This can create stale BFD sessions in PTM when BFD is removed from quagga configuration before quagga is restarted. BFD client de-registrations from BGP/OSPF also go missing sometimes when quagga is restarted. This also will cause stale BFD sessions in PTM. Root Cause: BFD client registrations were being sent at the time of BGP/OSPF daemon initialization. But, they were being sent to zebra before the socket connection between zebra and BGP/OSPF was established. This causes the missing BFD client registrations. BFD client de-registrations are sent from zebra when zebra detects socket close for BGP/OSPF daemons. Based on the timing, the de-registrations may happen after socket between PTM and zebra is closed. This will result in missing de-registrations. Fix: Moved sending of BFD client registration messages to zebra connected callback to make sure that they are sent after the BGP/OSPF daemons connect with zebra. Added BFD client de-registrations for BGP/OSPF to be also sent when zebra daemon gets restart signal. They are sent from the signal handler only if it was not already handled in zebra client socket close callback.
2016-06-21 12:39:58 +02:00
#include "lib/bfd.h"
#include "filter.h"
#include "mpls.h"
#include "vxlan.h"
#include "pbr.h"
2002-12-13 21:15:29 +01:00
#include "bgpd/bgpd.h"
#include "bgpd/bgp_route.h"
#include "bgpd/bgp_attr.h"
#include "bgpd/bgp_nexthop.h"
#include "bgpd/bgp_zebra.h"
#include "bgpd/bgp_fsm.h"
#include "bgpd/bgp_debug.h"
#include "bgpd/bgp_errors.h"
#include "bgpd/bgp_mpath.h"
#include "bgpd/bgp_nexthop.h"
#include "bgpd/bgp_nht.h"
#include "bgpd/bgp_bfd.h"
#include "bgpd/bgp_label.h"
#ifdef ENABLE_BGP_VNC
#include "bgpd/rfapi/rfapi_backend.h"
#include "bgpd/rfapi/vnc_export_bgp.h"
bgpd: add L3/L2VPN Virtual Network Control feature This feature adds an L3 & L2 VPN application that makes use of the VPN and Encap SAFIs. This code is currently used to support IETF NVO3 style operation. In NVO3 terminology it provides the Network Virtualization Authority (NVA) and the ability to import/export IP prefixes and MAC addresses from Network Virtualization Edges (NVEs). The code supports per-NVE tables. The NVE-NVA protocol used to communicate routing and Ethernet / Layer 2 (L2) forwarding information between NVAs and NVEs is referred to as the Remote Forwarder Protocol (RFP). OpenFlow is an example RFP. For general background on NVO3 and RFP concepts see [1]. For information on Openflow see [2]. RFPs are integrated with BGP via the RF API contained in the new "rfapi" BGP sub-directory. Currently, only a simple example RFP is included in Quagga. Developers may use this example as a starting point to integrate Quagga with an RFP of their choosing, e.g., OpenFlow. The RFAPI code also supports the ability import/export of routing information between VNC and customer edge routers (CEs) operating within a virtual network. Import/export may take place between BGP views or to the default zebera VRF. BGP, with IP VPNs and Tunnel Encapsulation, is used to distribute VPN information between NVAs. BGP based IP VPN support is defined in RFC4364, BGP/MPLS IP Virtual Private Networks (VPNs), and RFC4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN . Use of both the Encapsulation Subsequent Address Family Identifier (SAFI) and the Tunnel Encapsulation Attribute, RFC5512, The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute, are supported. MAC address distribution does not follow any standard BGB encoding, although it was inspired by the early IETF EVPN concepts. The feature is conditionally compiled and disabled by default. Use the --enable-bgp-vnc configure option to enable. The majority of this code was authored by G. Paul Ziemba <paulz@labn.net>. [1] http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req [2] https://www.opennetworking.org/sdn-resources/technical-library Now includes changes needed to merge with cmaster-next.
2016-05-07 20:18:56 +02:00
#endif
#include "bgpd/bgp_evpn.h"
#include "bgpd/bgp_mplsvpn.h"
#include "bgpd/bgp_labelpool.h"
#include "bgpd/bgp_pbr.h"
#include "bgpd/bgp_evpn_private.h"
#include "bgpd/bgp_mac.h"
2002-12-13 21:15:29 +01:00
/* All information about zebra. */
[bgpd] Stability fixes including bugs 397, 492 I've spent the last several weeks working on stability fixes to bgpd. These patches fix all of the numerous crashes, assertion failures, memory leaks and memory stomping I could find. Valgrind was used extensively. Added new function bgp_exit() to help catch problems. If "debug bgp" is configured and bgpd exits with status of 0, statistics on remaining lib/memory.c allocations are printed to stderr. It is my hope that other developers will use this to stay on top of memory issues. Example questionable exit: bgpd: memstats: Current memory utilization in module LIB: bgpd: memstats: Link List : 6 bgpd: memstats: Link Node : 5 bgpd: memstats: Hash : 8 bgpd: memstats: Hash Bucket : 2 bgpd: memstats: Hash Index : 8 bgpd: memstats: Work queue : 3 bgpd: memstats: Work queue item : 2 bgpd: memstats: Work queue name string : 3 bgpd: memstats: Current memory utilization in module BGP: bgpd: memstats: BGP instance : 1 bgpd: memstats: BGP peer : 1 bgpd: memstats: BGP peer hostname : 1 bgpd: memstats: BGP attribute : 1 bgpd: memstats: BGP extra attributes : 1 bgpd: memstats: BGP aspath : 1 bgpd: memstats: BGP aspath str : 1 bgpd: memstats: BGP table : 24 bgpd: memstats: BGP node : 1 bgpd: memstats: BGP route : 1 bgpd: memstats: BGP synchronise : 8 bgpd: memstats: BGP Process queue : 1 bgpd: memstats: BGP node clear queue : 1 bgpd: memstats: NOTE: If configuration exists, utilization may be expected. Example clean exit: bgpd: memstats: No remaining tracked memory utilization. This patch fixes bug #397: "Invalid free in bgp_announce_check()". This patch fixes bug #492: "SIGBUS in bgpd/bgp_route.c: bgp_clear_route_node()". My apologies for not separating out these changes into individual patches. The complexity of doing so boggled what is left of my brain. I hope this is all still useful to the community. This code has been production tested, in non-route-server-client mode, on a linux 32-bit box and a 64-bit box. Release/reset functions, used by bgp_exit(), added to: bgpd/bgp_attr.c,h bgpd/bgp_community.c,h bgpd/bgp_dump.c,h bgpd/bgp_ecommunity.c,h bgpd/bgp_filter.c,h bgpd/bgp_nexthop.c,h bgpd/bgp_route.c,h lib/routemap.c,h File by file analysis: * bgpd/bgp_aspath.c: Prevent re-use of ashash after it is released. * bgpd/bgp_attr.c: #if removed uncalled cluster_dup(). * bgpd/bgp_clist.c,h: Allow community_list_terminate() to be called from bgp_exit(). * bgpd/bgp_filter.c: Fix aslist->name use without allocation check, and also fix memory leak. * bgpd/bgp_main.c: Created bgp_exit() exit routine. This function frees allocations made as part of bgpd initialization and, to some extent, configuration. If "debug bgp" is configured, memory stats are printed as described above. * bgpd/bgp_nexthop.c: zclient_new() already allocates stream for ibuf/obuf, so bgp_scan_init() shouldn't do it too. Also, made it so zlookup is global so bgp_exit() can use it. * bgpd/bgp_packet.c: bgp_capability_msg_parse() call to bgp_clear_route() adjusted to use new BGP_CLEAR_ROUTE_NORMAL flag. * bgpd/bgp_route.h: Correct reference counter "lock" to be signed. bgp_clear_route() now accepts a bgp_clear_route_type of either BGP_CLEAR_ROUTE_NORMAL or BGP_CLEAR_ROUTE_MY_RSCLIENT. * bgpd/bgp_route.c: - bgp_process_rsclient(): attr was being zero'ed and then bgp_attr_extra_free() was being called with it, even though it was never filled with valid data. - bgp_process_rsclient(): Make sure rsclient->group is not NULL before use. - bgp_processq_del(): Add call to bgp_table_unlock(). - bgp_process(): Add call to bgp_table_lock(). - bgp_update_rsclient(): memset clearing of new_attr not needed since declarationw with "= { 0 }" does it. memset was already commented out. - bgp_update_rsclient(): Fix screwed up misleading indentation. - bgp_withdraw_rsclient(): Fix screwed up misleading indentation. - bgp_clear_route_node(): Support BGP_CLEAR_ROUTE_MY_RSCLIENT. - bgp_clear_node_queue_del(): Add call to bgp_table_unlock() and also free struct bgp_clear_node_queue used for work item. - bgp_clear_node_complete(): Do peer_unlock() after BGP_EVENT_ADD() in case peer is released by peer_unlock() call. - bgp_clear_route_table(): Support BGP_CLEAR_ROUTE_MY_RSCLIENT. Use struct bgp_clear_node_queue to supply data to worker. Add call to bgp_table_lock(). - bgp_clear_route(): Add support for BGP_CLEAR_ROUTE_NORMAL or BGP_CLEAR_ROUTE_MY_RSCLIENT. - bgp_clear_route_all(): Use BGP_CLEAR_ROUTE_NORMAL. Bug 397 fixes: - bgp_default_originate() - bgp_announce_table() * bgpd/bgp_table.h: - struct bgp_table: Added reference count. Changed type of owner to be "struct peer *" rather than "void *". - struct bgp_node: Correct reference counter "lock" to be signed. * bgpd/bgp_table.c: - Added bgp_table reference counting. - bgp_table_free(): Fixed cleanup code. Call peer_unlock() on owner if set. - bgp_unlock_node(): Added assertion. - bgp_node_get(): Added call to bgp_lock_node() to code path that it was missing from. * bgpd/bgp_vty.c: - peer_rsclient_set_vty(): Call peer_lock() as part of peer assignment to owner. Handle failure gracefully. - peer_rsclient_unset_vty(): Add call to bgp_clear_route() with BGP_CLEAR_ROUTE_MY_RSCLIENT purpose. * bgpd/bgp_zebra.c: Made it so zclient is global so bgp_exit() can use it. * bgpd/bgpd.c: - peer_lock(): Allow to be called when status is "Deleted". - peer_deactivate(): Supply BGP_CLEAR_ROUTE_NORMAL purpose to bgp_clear_route() call. - peer_delete(): Common variable listnode pn. Fix bug in which rsclient was only dealt with if not part of a peer group. Call bgp_clear_route() for rsclient, if appropriate, and do so with BGP_CLEAR_ROUTE_MY_RSCLIENT purpose. - peer_group_get(): Use XSTRDUP() instead of strdup() for conf->host. - peer_group_bind(): Call bgp_clear_route() for rsclient, and do so with BGP_CLEAR_ROUTE_MY_RSCLIENT purpose. - bgp_create(): Use XSTRDUP() instead of strdup() for peer_self->host. - bgp_delete(): Delete peers before groups, rather than after. And then rather than deleting rsclients, verify that there are none at this point. - bgp_unlock(): Add assertion. - bgp_free(): Call bgp_table_finish() rather than doing XFREE() itself. * lib/command.c,h: Compiler warning fixes. Add cmd_terminate(). Fixed massive leak in install_element() in which cmd_make_descvec() was being called more than once for the same cmd->strvec/string/doc. * lib/log.c: Make closezlog() check fp before calling fclose(). * lib/memory.c: Catch when alloc count goes negative by using signed counts. Correct #endif comment. Add log_memstats_stderr(). * lib/memory.h: Add log_memstats_stderr(). * lib/thread.c: thread->funcname was being accessed in thread_call() after it had been freed. Rearranged things so that thread_call() frees funcname. Also made it so thread_master_free() cleans up cpu_record. * lib/vty.c,h: Use global command_cr. Add vty_terminate(). * lib/zclient.c,h: Re-enable zclient_free().
2009-07-18 07:44:03 +02:00
struct zclient *zclient = NULL;
2002-12-13 21:15:29 +01:00
/* Can we install into zebra? */
static inline bool bgp_install_info_to_zebra(struct bgp *bgp)
{
if (zclient->sock <= 0)
return false;
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
zlog_debug(
"%s: No zebra instance to talk to, not installing information",
__func__);
return false;
}
return true;
}
int zclient_num_connects;
2004-10-03 20:18:34 +02:00
/* Router-id update message from zebra. */
static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
2002-12-13 21:15:29 +01:00
{
struct prefix router_id;
2002-12-13 21:15:29 +01:00
zebra_router_id_update_read(zclient->ibuf, &router_id);
if (BGP_DEBUG(zebra, ZEBRA)) {
char buf[PREFIX2STR_BUFFER];
prefix2str(&router_id, buf, sizeof(buf));
zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
}
bgp_router_id_zebra_bump(vrf_id, &router_id);
return 0;
2002-12-13 21:15:29 +01:00
}
/* Nexthop update message from zebra. */
static int bgp_read_nexthop_update(ZAPI_CALLBACK_ARGS)
{
bgp_parse_nexthop_update(cmd, vrf_id);
return 0;
}
static int bgp_read_import_check_update(ZAPI_CALLBACK_ARGS)
{
bgp_parse_nexthop_update(cmd, vrf_id);
return 0;
}
/* Set or clear interface on which unnumbered neighbor is configured. This
* would in turn cause BGP to initiate or turn off IPv6 RAs on this
* interface.
*/
static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
struct interface *upd_ifp)
{
struct listnode *node, *nnode;
struct peer *peer;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
if (upd_ifp) {
peer->ifp = upd_ifp;
bgp_zebra_initiate_radv(bgp, peer);
} else {
bgp_zebra_terminate_radv(bgp, peer);
peer->ifp = upd_ifp;
}
}
}
}
static int bgp_read_fec_update(int command, struct zclient *zclient,
zebra_size_t length)
{
bgp_parse_fec_update();
return 0;
}
static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
{
struct listnode *node, *nnode;
struct peer *peer;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
&& peer->status != Established) {
if (peer_active(peer))
BGP_EVENT_ADD(peer, BGP_Stop);
BGP_EVENT_ADD(peer, BGP_Start);
}
}
}
static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
{
struct listnode *node;
struct connected *connected;
struct interface *ifp;
struct prefix *p;
/* Kick-off the FSM for any relevant peers only if there is a
* valid local address on the interface.
*/
ifp = ifc->ifp;
for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
p = connected->address;
if (p->family == AF_INET6
&& IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
break;
}
if (!connected)
return;
bgp_start_interface_nbrs(bgp, ifp);
}
static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
int del)
{
struct listnode *node, *nnode;
struct peer *peer;
struct interface *ifp;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if
&& (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
BGP_EVENT_ADD(peer, BGP_Stop);
}
}
/* Free neighbor also, if we're asked to. */
if (del) {
ifp = ifc->ifp;
listnode_delete(ifp->nbr_connected, ifc);
nbr_connected_free(ifc);
}
}
static int bgp_ifp_destroy(struct interface *ifp)
2002-12-13 21:15:29 +01:00
{
struct bgp *bgp;
2002-12-13 21:15:29 +01:00
bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf del VRF %u IF %s", ifp->vrf_id, ifp->name);
if (bgp)
bgp_update_interface_nbrs(bgp, ifp, NULL);
bgp_mac_del_mac_entry(ifp);
return 0;
2002-12-13 21:15:29 +01:00
}
static int bgp_ifp_up(struct interface *ifp)
2002-12-13 21:15:29 +01:00
{
struct connected *c;
struct nbr_connected *nc;
struct listnode *node, *nnode;
struct bgp *bgp;
bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
2002-12-13 21:15:29 +01:00
bgp_mac_add_mac_entry(ifp);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf up VRF %u IF %s", ifp->vrf_id, ifp->name);
if (!bgp)
return 0;
for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
bgp_connected_add(bgp, c);
2002-12-13 21:15:29 +01:00
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_add(bgp, nc);
return 0;
2002-12-13 21:15:29 +01:00
}
static int bgp_ifp_down(struct interface *ifp)
2002-12-13 21:15:29 +01:00
{
struct connected *c;
struct nbr_connected *nc;
struct listnode *node, *nnode;
struct bgp *bgp;
struct peer *peer;
bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
2002-12-13 21:15:29 +01:00
bgp_mac_del_mac_entry(ifp);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf down VRF %u IF %s", ifp->vrf_id, ifp->name);
if (!bgp)
return 0;
for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
bgp_connected_delete(bgp, c);
2002-12-13 21:15:29 +01:00
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_delete(bgp, nc, 1);
/* Fast external-failover */
if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
2002-12-13 21:15:29 +01:00
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
#if defined(HAVE_CUMULUS)
/* Take down directly connected EBGP peers as well as
* 1-hop BFD
* tracked (directly connected) IBGP peers.
*/
if ((peer->ttl != BGP_DEFAULT_TTL)
&& (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED)
&& (!peer->bfd_info
|| bgp_bfd_is_peer_multihop(peer)))
#else
/* Take down directly connected EBGP peers */
if ((peer->ttl != BGP_DEFAULT_TTL)
&& (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED))
#endif
continue;
2002-12-13 21:15:29 +01:00
if (ifp == peer->nexthop.ifp) {
BGP_EVENT_ADD(peer, BGP_Stop);
peer->last_reset = PEER_DOWN_IF_DOWN;
}
}
}
2002-12-13 21:15:29 +01:00
return 0;
2002-12-13 21:15:29 +01:00
}
static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
2002-12-13 21:15:29 +01:00
{
struct connected *ifc;
struct bgp *bgp;
bgp = bgp_lookup_by_vrf_id(vrf_id);
ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address)) {
char buf[PREFIX2STR_BUFFER];
prefix2str(ifc->address, buf, sizeof(buf));
zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
ifc->ifp->name, buf);
}
if (!bgp)
return 0;
if (if_is_operative(ifc->ifp)) {
bgp_connected_add(bgp, ifc);
/* If we have learnt of any neighbors on this interface,
* check to kick off any BGP interface-based neighbors,
* but only if this is a link-local address.
*/
if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
&& !list_isempty(ifc->ifp->nbr_connected))
bgp_start_interface_nbrs(bgp, ifc->ifp);
}
return 0;
2002-12-13 21:15:29 +01:00
}
static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
2002-12-13 21:15:29 +01:00
{
struct connected *ifc;
struct bgp *bgp;
bgp = bgp_lookup_by_vrf_id(vrf_id);
ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
2002-12-13 21:15:29 +01:00
if (ifc == NULL)
return 0;
2002-12-13 21:15:29 +01:00
if (bgp_debug_zebra(ifc->address)) {
char buf[PREFIX2STR_BUFFER];
prefix2str(ifc->address, buf, sizeof(buf));
zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
ifc->ifp->name, buf);
}
if (bgp && if_is_operative(ifc->ifp)) {
bgp_connected_delete(bgp, ifc);
}
2002-12-13 21:15:29 +01:00
connected_free(&ifc);
2002-12-13 21:15:29 +01:00
return 0;
2002-12-13 21:15:29 +01:00
}
static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
{
struct nbr_connected *ifc = NULL;
struct bgp *bgp;
ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address)) {
char buf[PREFIX2STR_BUFFER];
prefix2str(ifc->address, buf, sizeof(buf));
zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
ifc->ifp->name, buf);
}
if (if_is_operative(ifc->ifp)) {
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (bgp)
bgp_nbr_connected_add(bgp, ifc);
}
return 0;
}
static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
{
struct nbr_connected *ifc = NULL;
struct bgp *bgp;
ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address)) {
char buf[PREFIX2STR_BUFFER];
prefix2str(ifc->address, buf, sizeof(buf));
zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
ifc->ifp->name, buf);
}
if (if_is_operative(ifc->ifp)) {
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (bgp)
bgp_nbr_connected_delete(bgp, ifc, 0);
}
nbr_connected_free(ifc);
return 0;
}
/* VRF update for an interface. */
static int bgp_interface_vrf_update(ZAPI_CALLBACK_ARGS)
{
struct interface *ifp;
vrf_id_t new_vrf_id;
struct connected *c;
struct nbr_connected *nc;
struct listnode *node, *nnode;
struct bgp *bgp;
struct peer *peer;
ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
&new_vrf_id);
if (!ifp)
return 0;
if (BGP_DEBUG(zebra, ZEBRA) && ifp)
zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
ifp->name, new_vrf_id);
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (bgp) {
for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
bgp_connected_delete(bgp, c);
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_delete(bgp, nc, 1);
/* Fast external-failover */
if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if ((peer->ttl != BGP_DEFAULT_TTL)
&& (peer->gtsm_hops
!= BGP_GTSM_HOPS_CONNECTED))
continue;
if (ifp == peer->nexthop.ifp)
BGP_EVENT_ADD(peer, BGP_Stop);
}
}
}
if_update_to_new_vrf(ifp, new_vrf_id);
bgp = bgp_lookup_by_vrf_id(new_vrf_id);
if (!bgp)
return 0;
for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
bgp_connected_add(bgp, c);
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_add(bgp, nc);
return 0;
}
2002-12-13 21:15:29 +01:00
/* Zebra route add and delete treatment. */
static int zebra_read_route(ZAPI_CALLBACK_ARGS)
2002-12-13 21:15:29 +01:00
{
enum nexthop_types_t nhtype;
struct zapi_route api;
union g_addr nexthop;
ifindex_t ifindex;
int add, i;
struct bgp *bgp;
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (zapi_route_decode(zclient->ibuf, &api) < 0)
return -1;
/* we completely ignore srcdest routes for now. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
return 0;
/* ignore link-local address. */
if (api.prefix.family == AF_INET6
&& IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
return 0;
nexthop = api.nexthops[0].gate;
ifindex = api.nexthops[0].ifindex;
nhtype = api.nexthops[0].type;
add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
if (add) {
/*
* The ADD message is actually an UPDATE and there is no
* explicit DEL
* for a prior redistributed route, if any. So, perform an
* implicit
* DEL processing for the same redistributed route from any
* other
* source type.
*/
for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
if (i != api.type)
bgp_redistribute_delete(bgp, &api.prefix, i,
api.instance);
}
/* Now perform the add/update. */
bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
nhtype, api.metric, api.type, api.instance,
api.tag);
} else {
bgp_redistribute_delete(bgp, &api.prefix, api.type,
api.instance);
}
if (bgp_debug_zebra(&api.prefix)) {
char buf[2][PREFIX_STRLEN];
prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
if (add) {
inet_ntop(api.prefix.family, &nexthop, buf[1],
sizeof(buf[1]));
zlog_debug(
"Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
vrf_id, zebra_route_string(api.type),
api.instance, buf[0], buf[1], nhtype,
ifindex, api.metric, api.tag);
} else {
zlog_debug(
"Rx route DEL VRF %u %s[%d] %s",
vrf_id, zebra_route_string(api.type),
api.instance, buf[0]);
}
}
return 0;
2002-12-13 21:15:29 +01:00
}
struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
2002-12-13 21:15:29 +01:00
{
struct vrf *vrf;
struct listnode *cnode;
struct interface *ifp;
struct connected *connected;
struct prefix_ipv4 p;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
p.family = AF_INET;
p.prefix = *addr;
p.prefixlen = IPV4_MAX_BITLEN;
FOR_ALL_INTERFACES (vrf, ifp) {
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET)
if (prefix_match(cp, (struct prefix *)&p))
return ifp;
}
2002-12-13 21:15:29 +01:00
}
return NULL;
2002-12-13 21:15:29 +01:00
}
struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
2002-12-13 21:15:29 +01:00
{
struct vrf *vrf;
struct listnode *cnode;
struct interface *ifp;
struct connected *connected;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
FOR_ALL_INTERFACES (vrf, ifp) {
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET)
if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
return ifp;
}
2002-12-13 21:15:29 +01:00
}
return NULL;
2002-12-13 21:15:29 +01:00
}
struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
vrf_id_t vrf_id)
2002-12-13 21:15:29 +01:00
{
struct vrf *vrf;
struct listnode *cnode;
struct interface *ifp;
struct connected *connected;
struct prefix_ipv6 p;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
p.family = AF_INET6;
p.prefix = *addr;
p.prefixlen = IPV6_MAX_BITLEN;
FOR_ALL_INTERFACES (vrf, ifp) {
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET6)
if (prefix_match(cp, (struct prefix *)&p)) {
if (IN6_IS_ADDR_LINKLOCAL(
&cp->u.prefix6)) {
if (ifindex == ifp->ifindex)
return ifp;
} else
return ifp;
}
}
2002-12-13 21:15:29 +01:00
}
return NULL;
2002-12-13 21:15:29 +01:00
}
struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
ifindex_t ifindex, vrf_id_t vrf_id)
2002-12-13 21:15:29 +01:00
{
struct vrf *vrf;
struct listnode *cnode;
struct interface *ifp;
struct connected *connected;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
FOR_ALL_INTERFACES (vrf, ifp) {
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET6)
if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
if (IN6_IS_ADDR_LINKLOCAL(
&cp->u.prefix6)) {
if (ifindex == ifp->ifindex)
return ifp;
} else
return ifp;
}
}
2002-12-13 21:15:29 +01:00
}
return NULL;
2002-12-13 21:15:29 +01:00
}
static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
2002-12-13 21:15:29 +01:00
{
struct listnode *cnode;
struct connected *connected;
struct prefix *cp;
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET6)
if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
return 1;
}
}
return 0;
2002-12-13 21:15:29 +01:00
}
static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
2002-12-13 21:15:29 +01:00
{
struct listnode *cnode;
struct connected *connected;
struct prefix *cp;
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if (cp->family == AF_INET6)
if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
return 1;
}
}
return 0;
2002-12-13 21:15:29 +01:00
}
static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
{
struct listnode *cnode;
struct connected *connected;
struct prefix *cp;
for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
cp = connected->address;
if ((cp->family == AF_INET)
&& !ipv4_martian(&(cp->u.prefix4))) {
*addr = cp->u.prefix4;
return 1;
}
}
return 0;
}
bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
struct bgp_nexthop *nexthop, struct peer *peer)
2002-12-13 21:15:29 +01:00
{
int ret = 0;
struct interface *ifp = NULL;
memset(nexthop, 0, sizeof(struct bgp_nexthop));
if (!local)
return false;
if (!remote)
return false;
if (local->sa.sa_family == AF_INET) {
nexthop->v4 = local->sin.sin_addr;
if (peer->update_if)
ifp = if_lookup_by_name(peer->update_if,
peer->bgp->vrf_id);
else
ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
peer->bgp->vrf_id);
2002-12-13 21:15:29 +01:00
}
if (local->sa.sa_family == AF_INET6) {
memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
if (peer->conf_if || peer->ifname)
ifp = if_lookup_by_name(peer->conf_if
? peer->conf_if
: peer->ifname,
peer->bgp->vrf_id);
} else if (peer->update_if)
ifp = if_lookup_by_name(peer->update_if,
peer->bgp->vrf_id);
else
ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
local->sin6.sin6_scope_id,
peer->bgp->vrf_id);
2002-12-13 21:15:29 +01:00
}
if (!ifp) {
/*
* BGP views do not currently get proper data
* from zebra( when attached ) to be able to
* properly resolve nexthops, so give this
* instance type a pass.
*/
if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
return true;
/*
* If we have no interface data but we have established
* some connection w/ zebra than something has gone
* terribly terribly wrong here, so say this failed
* If we do not any zebra connection then not
* having a ifp pointer is ok.
*/
return zclient_num_connects ? false : true;
}
nexthop->ifp = ifp;
/* IPv4 connection, fetch and store IPv6 local address(es) if any. */
if (local->sa.sa_family == AF_INET) {
/* IPv6 nexthop*/
ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
if (!ret) {
/* There is no global nexthop. Use link-local address as
* both the
* global and link-local nexthop. In this scenario, the
* expectation
* for interop is that the network admin would use a
* route-map to
* specify the global IPv6 nexthop.
*/
if_get_ipv6_local(ifp, &nexthop->v6_global);
memcpy(&nexthop->v6_local, &nexthop->v6_global,
IPV6_MAX_BYTELEN);
} else
if_get_ipv6_local(ifp, &nexthop->v6_local);
if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
peer->shared_network = 1;
else
peer->shared_network = 0;
2002-12-13 21:15:29 +01:00
}
/* IPv6 connection, fetch and store IPv4 local address if any. */
if (local->sa.sa_family == AF_INET6) {
struct interface *direct = NULL;
/* IPv4 nexthop. */
ret = if_get_ipv4_address(ifp, &nexthop->v4);
if (!ret && peer->local_id.s_addr != INADDR_ANY)
nexthop->v4 = peer->local_id;
/* Global address*/
if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
/* If directory connected set link-local address. */
direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
remote->sin6.sin6_scope_id,
peer->bgp->vrf_id);
if (direct)
if_get_ipv6_local(ifp, &nexthop->v6_local);
} else
/* Link-local address. */
{
ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
/* If there is no global address. Set link-local
address as
global. I know this break RFC specification... */
/* In this scenario, the expectation for interop is that
* the
* network admin would use a route-map to specify the
* global
* IPv6 nexthop.
*/
if (!ret)
memcpy(&nexthop->v6_global,
&local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
/* Always set the link-local address */
memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
}
if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
|| if_lookup_by_ipv6(&remote->sin6.sin6_addr,
remote->sin6.sin6_scope_id,
peer->bgp->vrf_id))
peer->shared_network = 1;
else
peer->shared_network = 0;
}
2002-12-13 21:15:29 +01:00
/* KAME stack specific treatment. */
2002-12-13 21:15:29 +01:00
#ifdef KAME
if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
&& IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
}
if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
&& IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
}
2002-12-13 21:15:29 +01:00
#endif /* KAME */
/* If we have identified the local interface, there is no error for now.
*/
return true;
2002-12-13 21:15:29 +01:00
}
static struct in6_addr *
bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
{
struct in6_addr *nexthop = NULL;
/* Only global address nexthop exists. */
if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
|| path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
nexthop = &path->attr->mp_nexthop_global;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_ifindex;
}
/* If both global and link-local address present. */
if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
|| path->attr->mp_nexthop_len
== BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
/* Check if route-map is set to prefer global over link-local */
if (path->attr->mp_nexthop_prefer_global) {
nexthop = &path->attr->mp_nexthop_global;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_ifindex;
} else {
/* Workaround for Cisco's nexthop bug. */
if (IN6_IS_ADDR_UNSPECIFIED(
&path->attr->mp_nexthop_global)
&& path->peer->su_remote->sa.sa_family
== AF_INET6) {
nexthop =
&path->peer->su_remote->sin6.sin6_addr;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->peer->nexthop.ifp
->ifindex;
} else {
nexthop = &path->attr->mp_nexthop_local;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_lla_ifindex;
}
}
}
return nexthop;
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
}
static bool bgp_table_map_apply(struct route_map *map, const struct prefix *p,
struct bgp_path_info *path)
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
{
route_map_result_t ret;
ret = route_map_apply(map, p, RMAP_BGP, path);
bgp_attr_flush(path->attr);
if (ret != RMAP_DENYMATCH)
return true;
if (bgp_debug_zebra(p)) {
if (p->family == AF_INET) {
char buf[2][INET_ADDRSTRLEN];
zlog_debug(
"Zebra rmap deny: IPv4 route %s/%d nexthop %s",
inet_ntop(AF_INET, &p->u.prefix4, buf[0],
sizeof(buf[0])),
p->prefixlen,
inet_ntop(AF_INET, &path->attr->nexthop, buf[1],
sizeof(buf[1])));
}
if (p->family == AF_INET6) {
char buf[2][INET6_ADDRSTRLEN];
ifindex_t ifindex;
struct in6_addr *nexthop;
nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
zlog_debug(
"Zebra rmap deny: IPv6 route %s/%d nexthop %s",
inet_ntop(AF_INET6, &p->u.prefix6, buf[0],
sizeof(buf[0])),
p->prefixlen,
inet_ntop(AF_INET6, nexthop,
buf[1], sizeof(buf[1])));
}
}
return false;
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
}
static struct thread *bgp_tm_thread_connect;
static bool bgp_tm_status_connected;
static bool bgp_tm_chunk_obtained;
#define BGP_FLOWSPEC_TABLE_CHUNK 100000
static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
struct bgp *bgp_tm_bgp;
static int bgp_zebra_tm_connect(struct thread *t)
{
struct zclient *zclient;
int delay = 10, ret = 0;
zclient = THREAD_ARG(t);
if (bgp_tm_status_connected && zclient->sock > 0)
delay = 60;
else {
bgp_tm_status_connected = false;
ret = tm_table_manager_connect(zclient);
}
if (ret < 0) {
zlog_info("Error connecting to table manager!");
bgp_tm_status_connected = false;
} else {
if (!bgp_tm_status_connected)
zlog_debug("Connecting to table manager. Success");
bgp_tm_status_connected = true;
if (!bgp_tm_chunk_obtained) {
if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
&bgp_tm_min,
&bgp_tm_max) >= 0) {
bgp_tm_chunk_obtained = true;
/* parse non installed entries */
bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
}
}
}
thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
&bgp_tm_thread_connect);
return 0;
}
bool bgp_zebra_tm_chunk_obtained(void)
{
return bgp_tm_chunk_obtained;
}
uint32_t bgp_zebra_tm_get_id(void)
{
static int table_id;
if (!bgp_tm_chunk_obtained)
return ++table_id;
return bgp_tm_min++;
}
void bgp_zebra_init_tm_connect(struct bgp *bgp)
{
int delay = 1;
/* if already set, do nothing
*/
if (bgp_tm_thread_connect != NULL)
return;
bgp_tm_status_connected = false;
bgp_tm_chunk_obtained = false;
bgp_tm_min = bgp_tm_max = 0;
bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
bgp_tm_bgp = bgp;
thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
&bgp_tm_thread_connect);
}
int bgp_zebra_get_table_range(uint32_t chunk_size,
uint32_t *start, uint32_t *end)
{
int ret;
if (!bgp_tm_status_connected)
return -1;
ret = tm_get_table_chunk(zclient, chunk_size, start, end);
if (ret < 0) {
flog_err(EC_BGP_TABLE_CHUNK,
"BGP: Error getting table chunk %u", chunk_size);
return -1;
}
zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
chunk_size, *start, *end);
return 0;
}
static bool update_ipv4nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
struct in_addr *nexthop,
struct attr *attr, bool is_evpn,
struct zapi_nexthop *api_nh)
{
api_nh->gate.ipv4 = *nexthop;
api_nh->vrf_id = nh_bgp->vrf_id;
/* Need to set fields appropriately for EVPN routes imported into
* a VRF (which are programmed as onlink on l3-vni SVI) as well as
* connected routes leaked into a VRF.
*/
if (is_evpn) {
api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
} else if (nh_othervrf &&
api_nh->gate.ipv4.s_addr == INADDR_ANY) {
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = attr->nh_ifindex;
} else
api_nh->type = NEXTHOP_TYPE_IPV4;
return true;
}
static bool update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
struct in6_addr *nexthop,
ifindex_t ifindex,
struct bgp_path_info *pi,
struct bgp_path_info *best_pi,
bool is_evpn,
struct zapi_nexthop *api_nh)
{
struct attr *attr;
attr = pi->attr;
api_nh->vrf_id = nh_bgp->vrf_id;
if (is_evpn) {
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
} else if (nh_othervrf) {
if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = attr->nh_ifindex;
} else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
if (ifindex == 0)
return false;
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
api_nh->ifindex = ifindex;
} else {
api_nh->type = NEXTHOP_TYPE_IPV6;
api_nh->ifindex = 0;
}
} else {
if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
if (pi == best_pi
&& attr->mp_nexthop_len
== BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
if (pi->peer->nexthop.ifp)
ifindex =
pi->peer->nexthop.ifp->ifindex;
if (!ifindex) {
if (pi->peer->conf_if)
ifindex = pi->peer->ifp->ifindex;
else if (pi->peer->ifname)
ifindex = ifname2ifindex(
pi->peer->ifname,
pi->peer->bgp->vrf_id);
else if (pi->peer->nexthop.ifp)
ifindex =
pi->peer->nexthop.ifp->ifindex;
}
if (ifindex == 0)
return false;
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
api_nh->ifindex = ifindex;
} else {
api_nh->type = NEXTHOP_TYPE_IPV6;
api_nh->ifindex = 0;
}
}
if (nexthop)
api_nh->gate.ipv6 = *nexthop;
return true;
}
static bool bgp_zebra_use_nhop_weighted(struct bgp *bgp, struct attr *attr,
uint64_t tot_bw, uint32_t *nh_weight)
{
uint32_t bw;
uint64_t tmp;
bw = attr->link_bw;
/* zero link-bandwidth and link-bandwidth not present are treated
* as the same situation.
*/
if (!bw) {
/* the only situations should be if we're either told
* to skip or use default weight.
*/
if (bgp->lb_handling == BGP_LINK_BW_SKIP_MISSING)
return false;
*nh_weight = BGP_ZEBRA_DEFAULT_NHOP_WEIGHT;
} else {
tmp = (uint64_t)bw * 100;
*nh_weight = ((uint32_t)(tmp / tot_bw));
}
return true;
}
void bgp_zebra_announce(struct bgp_node *rn, const struct prefix *p,
struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
safi_t safi)
2002-12-13 21:15:29 +01:00
{
struct zapi_route api;
struct zapi_nexthop *api_nh;
int nh_family;
unsigned int valid_nh_count = 0;
int has_valid_label = 0;
uint8_t distance;
struct peer *peer;
struct bgp_path_info *mpinfo;
uint32_t metric;
struct attr local_attr;
struct bgp_path_info local_info;
struct bgp_path_info *mpinfo_cp = &local_info;
route_tag_t tag;
mpls_label_t label;
int nh_othervrf = 0;
char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
bool is_evpn;
int nh_updated;
bool do_wt_ecmp;
uint64_t cum_bw = 0;
/* Don't try to install if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return;
if (bgp->main_zebra_update_hold)
return;
if (bgp_debug_zebra(p))
prefix2str(p, buf_prefix, sizeof(buf_prefix));
if (safi == SAFI_FLOWSPEC) {
bgp_pbr_update_entry(bgp, bgp_node_get_prefix(rn),
info, afi, safi, true);
return;
}
/*
* vrf leaking support (will have only one nexthop)
*/
if (info->extra && info->extra->bgp_orig)
nh_othervrf = 1;
/* Make Zebra API structure. */
memset(&api, 0, sizeof(api));
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = safi;
api.prefix = *p;
SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
peer = info->peer;
if (info->type == ZEBRA_ROUTE_BGP
&& info->sub_type == BGP_ROUTE_IMPORTED) {
/* Obtain peer from parent */
if (info->extra && info->extra->parent)
peer = ((struct bgp_path_info *)(info->extra->parent))
->peer;
}
tag = info->attr->tag;
/* If the route's source is EVPN, flag as such. */
is_evpn = is_route_parent_evpn(info);
if (is_evpn)
SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
|| info->sub_type == BGP_ROUTE_AGGREGATE) {
SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
2002-12-13 21:15:29 +01:00
}
if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
|| CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
|| CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
if (info->attr->rmap_table_id) {
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
api.tableid = info->attr->rmap_table_id;
}
/* Metric is currently based on the best-path only */
metric = info->attr->med;
/* Determine if we're doing weighted ECMP or not */
do_wt_ecmp = bgp_path_info_mpath_chkwtd(bgp, info);
if (do_wt_ecmp)
cum_bw = bgp_path_info_mpath_cumbw(info);
for (mpinfo = info; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
uint32_t nh_weight;
if (valid_nh_count >= multipath_num)
break;
*mpinfo_cp = *mpinfo;
nh_weight = 0;
/* Get nexthop address-family */
if (p->family == AF_INET
&& !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
nh_family = AF_INET;
else if (p->family == AF_INET6
|| (p->family == AF_INET
&& BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
nh_family = AF_INET6;
else
continue;
/* If processing for weighted ECMP, determine the next hop's
* weight. Based on user setting, we may skip the next hop
* in some situations.
*/
if (do_wt_ecmp) {
if (!bgp_zebra_use_nhop_weighted(bgp, mpinfo->attr,
cum_bw, &nh_weight))
continue;
}
api_nh = &api.nexthops[valid_nh_count];
if (nh_family == AF_INET) {
if (bgp_debug_zebra(&api.prefix)) {
if (mpinfo->extra) {
zlog_debug(
"%s: p=%s, bgp_is_valid_label: %d",
__func__, buf_prefix,
bgp_is_valid_label(
&mpinfo->extra
->label[0]));
} else {
zlog_debug(
"%s: p=%s, extra is NULL, no label",
__func__, buf_prefix);
}
}
if (bgp->table_map[afi][safi].name) {
/* Copy info and attributes, so the route-map
apply doesn't modify the BGP route info. */
local_attr = *mpinfo->attr;
mpinfo_cp->attr = &local_attr;
}
if (bgp->table_map[afi][safi].name) {
if (!bgp_table_map_apply(
bgp->table_map[afi][safi].map, p,
mpinfo_cp))
continue;
/* metric/tag is only allowed to be
* overridden on 1st nexthop */
if (mpinfo == info) {
metric = mpinfo_cp->attr->med;
tag = mpinfo_cp->attr->tag;
}
}
nh_updated = update_ipv4nh_for_route_install(
nh_othervrf,
nh_othervrf ?
info->extra->bgp_orig : bgp,
&mpinfo_cp->attr->nexthop,
mpinfo_cp->attr, is_evpn, api_nh);
} else {
ifindex_t ifindex = IFINDEX_INTERNAL;
struct in6_addr *nexthop;
if (bgp->table_map[afi][safi].name) {
/* Copy info and attributes, so the route-map
apply doesn't modify the BGP route info. */
local_attr = *mpinfo->attr;
mpinfo_cp->attr = &local_attr;
}
if (bgp->table_map[afi][safi].name) {
/* Copy info and attributes, so the route-map
apply doesn't modify the BGP route info. */
local_attr = *mpinfo->attr;
mpinfo_cp->attr = &local_attr;
if (!bgp_table_map_apply(
bgp->table_map[afi][safi].map, p,
mpinfo_cp))
continue;
/* metric/tag is only allowed to be
* overridden on 1st nexthop */
if (mpinfo == info) {
metric = mpinfo_cp->attr->med;
tag = mpinfo_cp->attr->tag;
}
}
nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
&ifindex);
nh_updated = update_ipv6nh_for_route_install(
nh_othervrf, nh_othervrf ?
info->extra->bgp_orig : bgp,
nexthop, ifindex,
mpinfo, info, is_evpn, api_nh);
}
/* Did we get proper nexthop info to update zebra? */
if (!nh_updated)
continue;
if (mpinfo->extra
&& bgp_is_valid_label(&mpinfo->extra->label[0])
&& !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
has_valid_label = 1;
label = label_pton(&mpinfo->extra->label[0]);
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
api_nh->label_num = 1;
api_nh->labels[0] = label;
}
memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
sizeof(struct ethaddr));
api_nh->weight = nh_weight;
valid_nh_count++;
}
/*
* When we create an aggregate route we must also
* install a Null0 route in the RIB, so overwrite
* what was written into api with a blackhole route
*/
if (info->sub_type == BGP_ROUTE_AGGREGATE)
zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
else
api.nexthop_num = valid_nh_count;
SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
api.metric = metric;
if (tag) {
SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
api.tag = tag;
}
distance = bgp_distance_apply(p, info, afi, safi, bgp);
if (distance) {
SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
api.distance = distance;
}
if (bgp_debug_zebra(p)) {
char prefix_buf[PREFIX_STRLEN];
char nh_buf[INET6_ADDRSTRLEN];
char eth_buf[ETHER_ADDR_STRLEN + 7] = {'\0'};
char buf1[ETHER_ADDR_STRLEN];
char label_buf[20];
int i;
prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
" count %d",
valid_nh_count ? "add" : "delete", bgp->vrf_id,
prefix_buf, api.metric, api.tag, api.nexthop_num);
for (i = 0; i < api.nexthop_num; i++) {
api_nh = &api.nexthops[i];
switch (api_nh->type) {
case NEXTHOP_TYPE_IFINDEX:
nh_buf[0] = '\0';
break;
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
nh_family = AF_INET;
inet_ntop(nh_family, &api_nh->gate, nh_buf,
sizeof(nh_buf));
break;
case NEXTHOP_TYPE_IPV6:
case NEXTHOP_TYPE_IPV6_IFINDEX:
nh_family = AF_INET6;
inet_ntop(nh_family, &api_nh->gate, nh_buf,
sizeof(nh_buf));
break;
case NEXTHOP_TYPE_BLACKHOLE:
strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
break;
default:
/* Note: add new nexthop case */
assert(0);
break;
}
label_buf[0] = '\0';
eth_buf[0] = '\0';
if (has_valid_label
&& !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
snprintf(label_buf, sizeof(label_buf),
"label %u", api_nh->labels[0]);
if (CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)
&& !is_zero_mac(&api_nh->rmac))
snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
prefix_mac2str(&api_nh->rmac,
buf1, sizeof(buf1)));
zlog_debug(" nhop [%d]: %s if %u VRF %u wt %u %s %s",
i + 1, nh_buf, api_nh->ifindex,
api_nh->vrf_id, api_nh->weight,
label_buf, eth_buf);
}
}
if (bgp_debug_zebra(p)) {
int recursion_flag = 0;
if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
recursion_flag = 1;
zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
__func__, buf_prefix,
(recursion_flag ? "" : "NOT "));
}
zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
: ZEBRA_ROUTE_DELETE,
zclient, &api);
2002-12-13 21:15:29 +01:00
}
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
/* Announce all routes of a table to zebra */
void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
{
struct bgp_node *rn;
struct bgp_table *table;
struct bgp_path_info *pi;
/* Don't try to install if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return;
table = bgp->rib[afi][safi];
if (!table)
return;
for (rn = bgp_table_top(table); rn; rn = bgp_route_next(rn))
for (pi = bgp_node_get_bgp_path_info(rn); pi; pi = pi->next)
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
(pi->type == ZEBRA_ROUTE_BGP
&& (pi->sub_type == BGP_ROUTE_NORMAL
|| pi->sub_type == BGP_ROUTE_IMPORTED)))
bgp_zebra_announce(rn, bgp_node_get_prefix(rn),
pi, bgp, afi, safi);
bgpd: bgpd-table-map.patch COMMAND: table-map <route-map-name> DESCRIPTION: This feature is used to apply a route-map on route updates from BGP to Zebra. All the applicable match operations are allowed, such as match on prefix, next-hop, communities, etc. Set operations for this attach-point are limited to metric and next-hop only. Any operation of this feature does not affect BGPs internal RIB. Supported for ipv4 and ipv6 address families. It works on multi-paths as well, however, metric setting is based on the best-path only. IMPLEMENTATION NOTES: The route-map application at this point is not supposed to modify any of BGP route's attributes (anything in bgp_info for that matter). To achieve that, creating a copy of the bgp_attr was inevitable. Implementation tries to keep the memory footprint low, code comments do point out the rationale behind a few choices made. bgp_zebra_announce() was already a big routine, adding this feature would extend it further. Patch has created a few smaller routines/macros whereever possible to keep the size of the routine in check without compromising on the readability of the code/flow inside this routine. For updating a partially filtered route (with its nexthops), BGP to Zebra replacement semantic of the next-hops serves the purpose well. However, with this patch there could be some redundant withdraws each time BGP announces a route thats (all the nexthops) gets denied by the route-map application. Handling of this case could be optimized by keeping state with the prefix and the nexthops in BGP. The patch doesn't optimizing that case, as even with the redundant withdraws the total number of updates to zebra are still be capped by the total number of routes in the table. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Pradosh Mohapatra <pmohapat@cumulusnetworks.com>
2015-05-20 02:40:34 +02:00
}
void bgp_zebra_withdraw(const struct prefix *p, struct bgp_path_info *info,
struct bgp *bgp, safi_t safi)
2002-12-13 21:15:29 +01:00
{
struct zapi_route api;
struct peer *peer;
/* Don't try to install if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return;
if (safi == SAFI_FLOWSPEC) {
peer = info->peer;
bgp_pbr_update_entry(peer->bgp, p, info, AFI_IP, safi, false);
return;
}
memset(&api, 0, sizeof(api));
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = safi;
api.prefix = *p;
if (info->attr->rmap_table_id) {
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
api.tableid = info->attr->rmap_table_id;
}
/* If the route's source is EVPN, flag as such. */
if (is_route_parent_evpn(info))
SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
if (bgp_debug_zebra(p)) {
char buf[PREFIX_STRLEN];
prefix2str(&api.prefix, buf, sizeof(buf));
zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
}
zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
2002-12-13 21:15:29 +01:00
}
struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
{
struct list *red_list;
struct listnode *node;
struct bgp_redist *red;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
red_list = bgp->redist[afi][type];
if (!red_list)
return (NULL);
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
if (red->instance == instance)
return red;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
return NULL;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
}
struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
{
struct list *red_list;
struct bgp_redist *red;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
red = bgp_redist_lookup(bgp, afi, type, instance);
if (red)
return red;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
if (!bgp->redist[afi][type])
bgp->redist[afi][type] = list_new();
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
red_list = bgp->redist[afi][type];
red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
red->instance = instance;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
listnode_add(red_list, red);
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
return red;
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
}
static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
{
struct bgp_redist *red;
red = bgp_redist_lookup(bgp, afi, type, instance);
if (red) {
listnode_delete(bgp->redist[afi][type], red);
XFREE(MTYPE_BGP_REDIST, red);
if (!bgp->redist[afi][type]->count)
list_delete(&bgp->redist[afi][type]);
}
Multi-Instance OSPF Summary ——————————————------------- - etc/init.d/quagga is modified to support creating separate ospf daemon process for each instance. Each individual instance is monitored by watchquagga just like any protocol daemons.(requires initd-mi.patch). - Vtysh is modified to able to connect to multiple daemons of the same protocol (supported for OSPF only for now). - ospfd is modified to remember the Instance-ID that its invoked with. For the entire life of the process it caters to any command request that matches that instance-ID (unless its a non instance specific command). Routes/messages to zebra are tagged with instance-ID. - zebra route/redistribute mechanisms are modified to work with [protocol type + instance-id] - bgpd now has ability to have multiple instance specific redistribution for a protocol (OSPF only supported/tested for now). - zlog ability to display instance-id besides the protocol/daemon name. - Changes in other daemons are to because of the needed integration with some of the modified APIs/routines. (Didn’t prefer replicating too many separate instance specific APIs.) - config/show/debug commands are modified to take instance-id argument as appropriate. Guidelines to start using multi-instance ospf --------------------------------------------- The patch is backward compatible, i.e for any previous way of single ospf deamon(router ospf <cr>) will continue to work as is, including all the show commands etc. To enable multiple instances, do the following: 1. service quagga stop 2. Modify /etc/quagga/daemons to add instance-ids of each desired instance in the following format: ospfd=“yes" ospfd_instances="1,2,3" assuming you want to enable 3 instances with those instance ids. 3. Create corresponding ospfd config files as ospfd-1.conf, ospfd-2.conf and ospfd-3.conf. 4. service quagga start/restart 5. Verify that the deamons are started as expected. You should see ospfd started with -n <instance-id> option. ps –ef | grep quagga With that /var/run/quagga/ should have ospfd-<instance-id>.pid and ospfd-<instance-id>/vty to each instance. 6. vtysh to work with instances as you would with any other deamons. 7. Overall most quagga semantics are the same working with the instance deamon, like it is for any other daemon. NOTE: To safeguard against errors leading to too many processes getting invoked, a hard limit on number of instance-ids is in place, currently its 5. Allowed instance-id range is <1-65535> Once daemons are up, show running from vtysh should show the instance-id of each daemon as 'router ospf <instance-id>’ (without needing explicit configuration) Instance-id can not be changed via vtysh, other router ospf configuration is allowed as before. Signed-off-by: Vipin Kumar <vipin@cumulusnetworks.com> Reviewed-by: Daniel Walton <dwalton@cumulusnetworks.com> Reviewed-by: Dinesh G Dutt <ddutt@cumulusnetworks.com>
2015-05-20 03:03:42 +02:00
}
2002-12-13 21:15:29 +01:00
/* Other routes redistribution into BGP. */
int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
unsigned short instance, bool changed)
2002-12-13 21:15:29 +01:00
{
/* If redistribute options are changed call
* bgp_redistribute_unreg() to reset the option and withdraw
* the routes
*/
if (changed)
bgp_redistribute_unreg(bgp, afi, type, instance);
2002-12-13 21:15:29 +01:00
/* Return if already redistribute flag is set. */
if (instance) {
if (redist_check_instance(&zclient->mi_redist[afi][type],
instance))
return CMD_WARNING;
2002-12-13 21:15:29 +01:00
redist_add_instance(&zclient->mi_redist[afi][type], instance);
} else {
if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
return CMD_WARNING;
*: add VRF ID in the API message header The API messages are used by zebra to exchange the interfaces, addresses, routes and router-id information with its clients. To distinguish which VRF the information belongs to, a new field "VRF ID" is added in the message header. And hence the message version is increased to 3. * The new field "VRF ID" in the message header: Length (2 bytes) Marker (1 byte) Version (1 byte) VRF ID (2 bytes, newly added) Command (2 bytes) - Client side: - zclient_create_header() adds the VRF ID in the message header. - zclient_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the callback functions registered to the API messages. - All relative functions are appended with a new parameter "vrf_id", including all the callback functions. - "vrf_id" is also added to "struct zapi_ipv4" and "struct zapi_ipv6". Clients need to correctly set the VRF ID when using the API functions zapi_ipv4_route() and zapi_ipv6_route(). - Till now all messages sent from a client have the default VRF ID "0" in the header. - The HELLO message is special, which is used as the heart-beat of a client, and has no relation with VRF. The VRF ID in the HELLO message header will always be 0 and ignored by zebra. - Zebra side: - zserv_create_header() adds the VRF ID in the message header. - zebra_client_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the functions which process the received messages. - All relative functions are appended with a new parameter "vrf_id". * Suppress the messages in a VRF which a client does not care: Some clients may not care about the information in the VRF X, and zebra should not send the messages in the VRF X to those clients. Extra flags are used to indicate which VRF is registered by a client, and a new message ZEBRA_VRF_UNREGISTER is introduced to let a client can unregister a VRF when it does not need any information in that VRF. A client sends any message other than ZEBRA_VRF_UNREGISTER in a VRF will automatically register to that VRF. - lib/vrf: A new utility "VRF bit-map" is provided to manage the flags for VRFs, one bit per VRF ID. - Use vrf_bitmap_init()/vrf_bitmap_free() to initialize/free a bit-map; - Use vrf_bitmap_set()/vrf_bitmap_unset() to set/unset a flag in the given bit-map, corresponding to the given VRF ID; - Use vrf_bitmap_check() to test whether the flag, in the given bit-map and for the given VRF ID, is set. - Client side: - In "struct zclient", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] default_information These flags are extended for each VRF, and controlled by the clients themselves (or with the help of zclient_redistribute() and zclient_redistribute_default()). - Zebra side: - In "struct zserv", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] redist_default ifinfo ridinfo These flags are extended for each VRF, as the VRF registration flags. They are maintained on receiving a ZEBRA_XXX_ADD or ZEBRA_XXX_DELETE message. When sending an interface/address/route/router-id message in a VRF to a client, if the corresponding VRF registration flag is not set, this message will not be dropped by zebra. - A new function zread_vrf_unregister() is introduced to process the new command ZEBRA_VRF_UNREGISTER. All the VRF registration flags are cleared for the requested VRF. Those clients, who support only the default VRF, will never receive a message in a non-default VRF, thanks to the filter in zebra. * New callback for the event of successful connection to zebra: - zclient_start() is splitted, keeping only the code of connecting to zebra. - Now zclient_init()=>zclient_connect()=>zclient_start() operations are purely dealing with the connection to zbera. - Once zebra is successfully connected, at the end of zclient_start(), a new callback is used to inform the client about connection. - Till now, in the callback of connect-to-zebra event, all clients send messages to zebra to request the router-id/interface/routes information in the default VRF. Of corse in future the client can do anything it wants in this callback. For example, it may send requests for both default VRF and some non-default VRFs. Signed-off-by: Feng Lu <lu.feng@6wind.com> Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com> Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Acked-by: Donald Sharp <sharpd@cumulusnetworks.com> Conflicts: lib/zclient.h lib/zebra.h zebra/zserv.c zebra/zserv.h Conflicts: bgpd/bgp_nexthop.c bgpd/bgp_nht.c bgpd/bgp_zebra.c isisd/isis_zebra.c lib/zclient.c lib/zclient.h lib/zebra.h nhrpd/nhrp_interface.c nhrpd/nhrp_route.c nhrpd/nhrpd.h ospf6d/ospf6_zebra.c ospf6d/ospf6_zebra.h ospfd/ospf_vty.c ospfd/ospf_zebra.c pimd/pim_zebra.c pimd/pim_zlookup.c ripd/rip_zebra.c ripngd/ripng_zebra.c zebra/redistribute.c zebra/rt_netlink.c zebra/zebra_rnh.c zebra/zebra_rnh.h zebra/zserv.c zebra/zserv.h
2014-10-16 03:52:36 +02:00
#ifdef ENABLE_BGP_VNC
if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
vnc_export_bgp_enable(
bgp, afi); /* only enables if mode bits cfg'd */
}
bgpd: add L3/L2VPN Virtual Network Control feature This feature adds an L3 & L2 VPN application that makes use of the VPN and Encap SAFIs. This code is currently used to support IETF NVO3 style operation. In NVO3 terminology it provides the Network Virtualization Authority (NVA) and the ability to import/export IP prefixes and MAC addresses from Network Virtualization Edges (NVEs). The code supports per-NVE tables. The NVE-NVA protocol used to communicate routing and Ethernet / Layer 2 (L2) forwarding information between NVAs and NVEs is referred to as the Remote Forwarder Protocol (RFP). OpenFlow is an example RFP. For general background on NVO3 and RFP concepts see [1]. For information on Openflow see [2]. RFPs are integrated with BGP via the RF API contained in the new "rfapi" BGP sub-directory. Currently, only a simple example RFP is included in Quagga. Developers may use this example as a starting point to integrate Quagga with an RFP of their choosing, e.g., OpenFlow. The RFAPI code also supports the ability import/export of routing information between VNC and customer edge routers (CEs) operating within a virtual network. Import/export may take place between BGP views or to the default zebera VRF. BGP, with IP VPNs and Tunnel Encapsulation, is used to distribute VPN information between NVAs. BGP based IP VPN support is defined in RFC4364, BGP/MPLS IP Virtual Private Networks (VPNs), and RFC4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN . Use of both the Encapsulation Subsequent Address Family Identifier (SAFI) and the Tunnel Encapsulation Attribute, RFC5512, The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute, are supported. MAC address distribution does not follow any standard BGB encoding, although it was inspired by the early IETF EVPN concepts. The feature is conditionally compiled and disabled by default. Use the --enable-bgp-vnc configure option to enable. The majority of this code was authored by G. Paul Ziemba <paulz@labn.net>. [1] http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req [2] https://www.opennetworking.org/sdn-resources/technical-library Now includes changes needed to merge with cmaster-next.
2016-05-07 20:18:56 +02:00
#endif
vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
}
2002-12-13 21:15:29 +01:00
/*
* Don't try to register if we're not connected to Zebra or Zebra
* doesn't know of this instance.
*
* When we come up later well resend if needed.
*/
if (!bgp_install_info_to_zebra(bgp))
return CMD_SUCCESS;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
bgp->vrf_id, afi, zebra_route_string(type),
instance);
/* Send distribute add message to zebra. */
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
instance, bgp->vrf_id);
2002-12-13 21:15:29 +01:00
return CMD_SUCCESS;
2002-12-13 21:15:29 +01:00
}
int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
/* Don't try to send if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return -1;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
bgp->vrf_id, afi, zebra_route_string(type),
instance);
/* Send distribute add message to zebra. */
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
instance, bgp->vrf_id);
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
instance, bgp->vrf_id);
return 0;
}
2002-12-13 21:15:29 +01:00
/* Redistribute with route-map specification. */
bool bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
struct route_map *route_map)
2002-12-13 21:15:29 +01:00
{
if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
return false;
2002-12-13 21:15:29 +01:00
XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
/* Decrement the count for existing routemap and
* increment the count for new route map.
*/
route_map_counter_decrement(red->rmap.map);
red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
red->rmap.map = route_map;
route_map_counter_increment(red->rmap.map);
2002-12-13 21:15:29 +01:00
return true;
2002-12-13 21:15:29 +01:00
}
/* Redistribute with metric specification. */
bool bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
afi_t afi, int type, uint32_t metric)
2002-12-13 21:15:29 +01:00
{
struct bgp_node *rn;
struct bgp_path_info *pi;
if (red->redist_metric_flag && red->redist_metric == metric)
return false;
red->redist_metric_flag = 1;
red->redist_metric = metric;
for (rn = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); rn;
rn = bgp_route_next(rn)) {
for (pi = bgp_node_get_bgp_path_info(rn); pi; pi = pi->next) {
if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
&& pi->type == type
&& pi->instance == red->instance) {
struct attr *old_attr;
struct attr new_attr;
new_attr = *pi->attr;
new_attr.med = red->redist_metric;
old_attr = pi->attr;
pi->attr = bgp_attr_intern(&new_attr);
bgp_attr_unintern(&old_attr);
bgp_path_info_set_flag(rn, pi,
BGP_PATH_ATTR_CHANGED);
bgp_process(bgp, rn, afi, SAFI_UNICAST);
}
}
}
return true;
2002-12-13 21:15:29 +01:00
}
/* Unset redistribution. */
int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
2002-12-13 21:15:29 +01:00
{
struct bgp_redist *red;
red = bgp_redist_lookup(bgp, afi, type, instance);
if (!red)
return CMD_SUCCESS;
/* Return if zebra connection is disabled. */
if (instance) {
if (!redist_check_instance(&zclient->mi_redist[afi][type],
instance))
return CMD_WARNING;
redist_del_instance(&zclient->mi_redist[afi][type], instance);
} else {
if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
return CMD_WARNING;
vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
}
2002-12-13 21:15:29 +01:00
bgpd: add L3/L2VPN Virtual Network Control feature This feature adds an L3 & L2 VPN application that makes use of the VPN and Encap SAFIs. This code is currently used to support IETF NVO3 style operation. In NVO3 terminology it provides the Network Virtualization Authority (NVA) and the ability to import/export IP prefixes and MAC addresses from Network Virtualization Edges (NVEs). The code supports per-NVE tables. The NVE-NVA protocol used to communicate routing and Ethernet / Layer 2 (L2) forwarding information between NVAs and NVEs is referred to as the Remote Forwarder Protocol (RFP). OpenFlow is an example RFP. For general background on NVO3 and RFP concepts see [1]. For information on Openflow see [2]. RFPs are integrated with BGP via the RF API contained in the new "rfapi" BGP sub-directory. Currently, only a simple example RFP is included in Quagga. Developers may use this example as a starting point to integrate Quagga with an RFP of their choosing, e.g., OpenFlow. The RFAPI code also supports the ability import/export of routing information between VNC and customer edge routers (CEs) operating within a virtual network. Import/export may take place between BGP views or to the default zebera VRF. BGP, with IP VPNs and Tunnel Encapsulation, is used to distribute VPN information between NVAs. BGP based IP VPN support is defined in RFC4364, BGP/MPLS IP Virtual Private Networks (VPNs), and RFC4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN . Use of both the Encapsulation Subsequent Address Family Identifier (SAFI) and the Tunnel Encapsulation Attribute, RFC5512, The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute, are supported. MAC address distribution does not follow any standard BGB encoding, although it was inspired by the early IETF EVPN concepts. The feature is conditionally compiled and disabled by default. Use the --enable-bgp-vnc configure option to enable. The majority of this code was authored by G. Paul Ziemba <paulz@labn.net>. [1] http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req [2] https://www.opennetworking.org/sdn-resources/technical-library Now includes changes needed to merge with cmaster-next.
2016-05-07 20:18:56 +02:00
if (bgp_install_info_to_zebra(bgp)) {
/* Send distribute delete message to zebra. */
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
bgp->vrf_id, afi, zebra_route_string(type),
instance);
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
type, instance, bgp->vrf_id);
}
/* Withdraw redistributed routes from current BGP's routing table. */
bgp_redistribute_withdraw(bgp, afi, type, instance);
return CMD_SUCCESS;
2002-12-13 21:15:29 +01:00
}
/* Unset redistribution. */
int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
struct bgp_redist *red;
/*
* vnc and vpn->vrf checks must be before red check because
* they operate within bgpd irrespective of zebra connection
* status. red lookup fails if there is no zebra connection.
*/
#ifdef ENABLE_BGP_VNC
if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
vnc_export_bgp_disable(bgp, afi);
}
#endif
red = bgp_redist_lookup(bgp, afi, type, instance);
if (!red)
return CMD_SUCCESS;
bgp_redistribute_unreg(bgp, afi, type, instance);
/* Unset route-map. */
XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
route_map_counter_decrement(red->rmap.map);
red->rmap.map = NULL;
/* Unset metric. */
red->redist_metric_flag = 0;
red->redist_metric = 0;
bgp_redist_del(bgp, afi, type, instance);
return CMD_SUCCESS;
}
void bgp_redistribute_redo(struct bgp *bgp)
{
afi_t afi;
int i;
struct list *red_list;
struct listnode *node;
struct bgp_redist *red;
for (afi = AFI_IP; afi < AFI_MAX; afi++) {
for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
red_list = bgp->redist[afi][i];
if (!red_list)
continue;
for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
bgp_redistribute_resend(bgp, afi, i,
red->instance);
}
}
}
}
/* Unset redistribute vrf bitmap during triggers like
restart networking or delete VRFs */
void bgp_unset_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
{
int i;
afi_t afi;
for (afi = AFI_IP; afi < AFI_MAX; afi++)
for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
if (vrf_bitmap_check(zclient->redist[afi][i],
old_vrf_id))
vrf_bitmap_unset(zclient->redist[afi][i],
old_vrf_id);
return;
}
void bgp_zclient_reset(void)
2002-12-13 21:15:29 +01:00
{
zclient_reset(zclient);
2002-12-13 21:15:29 +01:00
}
/* Register this instance with Zebra. Invoked upon connect (for
* default instance) and when other VRFs are learnt (or created and
* already learnt).
*/
void bgp_zebra_instance_register(struct bgp *bgp)
{
/* Don't try to register if we're not connected to Zebra */
if (!zclient || zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Registering VRF %u", bgp->vrf_id);
/* Register for router-id, interfaces, redistributed routes. */
zclient_send_reg_requests(zclient, bgp->vrf_id);
/* For EVPN instance, register to learn about VNIs, if appropriate. */
if (bgp->advertise_all_vni)
bgp_zebra_advertise_all_vni(bgp, 1);
bgp_nht_register_nexthops(bgp);
}
/* Deregister this instance with Zebra. Invoked upon the instance
* being deleted (default or VRF) and it is already registered.
*/
void bgp_zebra_instance_deregister(struct bgp *bgp)
{
/* Don't try to deregister if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Deregistering VRF %u", bgp->vrf_id);
/* For EVPN instance, unregister learning about VNIs, if appropriate. */
if (bgp->advertise_all_vni)
bgp_zebra_advertise_all_vni(bgp, 0);
/* Deregister for router-id, interfaces, redistributed routes. */
zclient_send_dereg_requests(zclient, bgp->vrf_id);
}
void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
{
int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
/* Don't try to initiate if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
peer->host);
/*
* If unnumbered peer (peer->ifp) call thru zapi to start RAs.
* If we don't have an ifp pointer, call function to find the
* ifps for a numbered enhe peer to turn RAs on.
*/
peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
peer->ifp, 1, ra_interval)
: bgp_nht_reg_enhe_cap_intfs(peer);
}
void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
{
/* Don't try to terminate if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
peer->host);
/*
* If unnumbered peer (peer->ifp) call thru zapi to stop RAs.
* If we don't have an ifp pointer, call function to find the
* ifps for a numbered enhe peer to turn RAs off.
*/
peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
peer->ifp, 0, 0)
: bgp_nht_dereg_enhe_cap_intfs(peer);
}
int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, cannot advertise subnet",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
stream_putc(s, advertise);
stream_put3(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
stream_putc(s, advertise);
stream_putl(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, not installing gw_macip",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
stream_putc(s, advertise);
stream_putl(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
enum vxlan_flood_control flood_ctrl)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, not installing all vni",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
stream_putc(s, flood_ctrl);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
stream_putc(s, advertise);
/* Also inform current BUM handling setting. This is really
* relevant only when 'advertise' is set.
*/
stream_putc(s, bgp->vxlan_flood_ctrl);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_dup_addr_detection(struct bgp *bgp)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
bgp->evpn_info->dup_addr_detect ?
"enable" : "disable",
bgp->evpn_info->dad_max_moves,
bgp->evpn_info->dad_time,
bgp->evpn_info->dad_freeze ?
"enable" : "disable",
bgp->evpn_info->dad_freeze_time);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
bgp->vrf_id);
stream_putl(s, bgp->evpn_info->dup_addr_detect);
stream_putl(s, bgp->evpn_info->dad_time);
stream_putl(s, bgp->evpn_info->dad_max_moves);
stream_putl(s, bgp->evpn_info->dad_freeze);
stream_putl(s, bgp->evpn_info->dad_freeze_time);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t seqno, priority, unique;
enum zapi_rule_notify_owner note;
struct bgp_pbr_action *bgp_pbra;
struct bgp_pbr_rule *bgp_pbr = NULL;
ifindex_t ifi;
if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
&ifi, &note))
return -1;
bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
if (!bgp_pbra) {
/* look in bgp pbr rule */
bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP rule (%u)",
__func__, unique);
return 0;
}
}
switch (note) {
case ZAPI_RULE_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE_FAIL_INSTALL", __func__);
if (bgp_pbra) {
bgp_pbra->installed = false;
bgp_pbra->install_in_progress = false;
} else {
bgp_pbr->installed = false;
bgp_pbr->install_in_progress = false;
}
break;
case ZAPI_RULE_INSTALLED:
if (bgp_pbra) {
bgp_pbra->installed = true;
bgp_pbra->install_in_progress = false;
} else {
struct bgp_path_info *path;
struct bgp_path_info_extra *extra;
bgp_pbr->installed = true;
bgp_pbr->install_in_progress = false;
bgp_pbr->action->refcnt++;
/* link bgp_info to bgp_pbr */
path = (struct bgp_path_info *)bgp_pbr->path;
extra = bgp_path_info_extra_get(path);
listnode_add_force(&extra->bgp_fs_iprule,
bgp_pbr);
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE_INSTALLED", __func__);
break;
case ZAPI_RULE_FAIL_REMOVE:
case ZAPI_RULE_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE REMOVED", __func__);
break;
}
return 0;
}
static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
enum zapi_ipset_notify_owner note;
struct bgp_pbr_match *bgp_pbim;
if (!zapi_ipset_notify_decode(zclient->ibuf,
&unique,
&note))
return -1;
bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
if (!bgp_pbim) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPSET_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_FAIL_INSTALL", __func__);
bgp_pbim->installed = false;
bgp_pbim->install_in_progress = false;
break;
case ZAPI_IPSET_INSTALLED:
bgp_pbim->installed = true;
bgp_pbim->install_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_INSTALLED", __func__);
break;
case ZAPI_IPSET_FAIL_REMOVE:
case ZAPI_IPSET_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET REMOVED", __func__);
break;
}
return 0;
}
static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
char ipset_name[ZEBRA_IPSET_NAME_SIZE];
enum zapi_ipset_entry_notify_owner note;
struct bgp_pbr_match_entry *bgp_pbime;
if (!zapi_ipset_entry_notify_decode(
zclient->ibuf,
&unique,
ipset_name,
&note))
return -1;
bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
ipset_name,
unique);
if (!bgp_pbime) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: Fail to look BGP match entry (%u, ID %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
__func__);
bgp_pbime->installed = false;
bgp_pbime->install_in_progress = false;
break;
case ZAPI_IPSET_ENTRY_INSTALLED:
{
struct bgp_path_info *path;
struct bgp_path_info_extra *extra;
bgp_pbime->installed = true;
bgp_pbime->install_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
__func__);
/* link bgp_path_info to bpme */
path = (struct bgp_path_info *)bgp_pbime->path;
extra = bgp_path_info_extra_get(path);
listnode_add_force(&extra->bgp_fs_pbr, bgp_pbime);
}
break;
case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
case ZAPI_IPSET_ENTRY_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
__func__);
break;
}
return 0;
}
static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
enum zapi_iptable_notify_owner note;
struct bgp_pbr_match *bgpm;
if (!zapi_iptable_notify_decode(
zclient->ibuf,
&unique,
&note))
return -1;
bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
if (!bgpm) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP iptable (%u %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPTABLE_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
__func__);
bgpm->installed_in_iptable = false;
bgpm->install_iptable_in_progress = false;
break;
case ZAPI_IPTABLE_INSTALLED:
bgpm->installed_in_iptable = true;
bgpm->install_iptable_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE_INSTALLED", __func__);
bgpm->action->refcnt++;
break;
case ZAPI_IPTABLE_FAIL_REMOVE:
case ZAPI_IPTABLE_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE REMOVED", __func__);
break;
}
return 0;
}
/* this function is used to forge ip rule,
* - either for iptable/ipset using fwmark id
* - or for sample ip rule cmd
*/
static void bgp_encode_pbr_rule_action(struct stream *s,
struct bgp_pbr_action *pbra,
struct bgp_pbr_rule *pbr)
{
struct prefix pfx;
stream_putl(s, 0); /* seqno unused */
if (pbr)
stream_putl(s, pbr->priority);
else
stream_putl(s, 0);
/* ruleno unused - priority change
* ruleno permits distinguishing various FS PBR entries
* - FS PBR entries based on ipset/iptables
* - FS PBR entries based on iprule
* the latter may contain default routing information injected by FS
*/
if (pbr)
stream_putl(s, pbr->unique);
else
stream_putl(s, pbra->unique);
if (pbr && pbr->flags & MATCH_IP_SRC_SET)
memcpy(&pfx, &(pbr->src), sizeof(struct prefix));
else {
memset(&pfx, 0, sizeof(pfx));
pfx.family = AF_INET;
}
stream_putc(s, pfx.family);
stream_putc(s, pfx.prefixlen);
stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
stream_putw(s, 0); /* src port */
if (pbr && pbr->flags & MATCH_IP_DST_SET)
memcpy(&pfx, &(pbr->dst), sizeof(struct prefix));
else {
memset(&pfx, 0, sizeof(pfx));
pfx.family = AF_INET;
}
stream_putc(s, pfx.family);
stream_putc(s, pfx.prefixlen);
stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
stream_putw(s, 0); /* dst port */
/* if pbr present, fwmark is not used */
if (pbr)
stream_putl(s, 0);
else
stream_putl(s, pbra->fwmark); /* fwmark */
stream_putl(s, pbra->table_id);
stream_putl(s, 0); /* ifindex unused */
}
static void bgp_encode_pbr_ipset_match(struct stream *s,
struct bgp_pbr_match *pbim)
{
stream_putl(s, pbim->unique);
stream_putl(s, pbim->type);
stream_put(s, pbim->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
}
static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
struct bgp_pbr_match_entry *pbime)
{
stream_putl(s, pbime->unique);
/* check that back pointer is not null */
stream_put(s, pbime->backpointer->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
stream_putc(s, pbime->src.family);
stream_putc(s, pbime->src.prefixlen);
stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
stream_putc(s, pbime->dst.family);
stream_putc(s, pbime->dst.prefixlen);
stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
stream_putw(s, pbime->src_port_min);
stream_putw(s, pbime->src_port_max);
stream_putw(s, pbime->dst_port_min);
stream_putw(s, pbime->dst_port_max);
stream_putc(s, pbime->proto);
}
static void bgp_encode_pbr_iptable_match(struct stream *s,
struct bgp_pbr_action *bpa,
struct bgp_pbr_match *pbm)
{
stream_putl(s, pbm->unique2);
stream_putl(s, pbm->type);
stream_putl(s, pbm->flags);
/* TODO: correlate with what is contained
* into bgp_pbr_action.
* currently only forward supported
*/
if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
stream_putl(s, ZEBRA_IPTABLES_DROP);
else
stream_putl(s, ZEBRA_IPTABLES_FORWARD);
stream_putl(s, bpa->fwmark);
stream_put(s, pbm->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
stream_putw(s, pbm->pkt_len_min);
stream_putw(s, pbm->pkt_len_max);
stream_putw(s, pbm->tcp_flags);
stream_putw(s, pbm->tcp_mask_flags);
stream_putc(s, pbm->dscp_value);
stream_putc(s, pbm->fragment);
stream_putc(s, pbm->protocol);
}
/* BGP has established connection with Zebra. */
static void bgp_zebra_connected(struct zclient *zclient)
*: add VRF ID in the API message header The API messages are used by zebra to exchange the interfaces, addresses, routes and router-id information with its clients. To distinguish which VRF the information belongs to, a new field "VRF ID" is added in the message header. And hence the message version is increased to 3. * The new field "VRF ID" in the message header: Length (2 bytes) Marker (1 byte) Version (1 byte) VRF ID (2 bytes, newly added) Command (2 bytes) - Client side: - zclient_create_header() adds the VRF ID in the message header. - zclient_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the callback functions registered to the API messages. - All relative functions are appended with a new parameter "vrf_id", including all the callback functions. - "vrf_id" is also added to "struct zapi_ipv4" and "struct zapi_ipv6". Clients need to correctly set the VRF ID when using the API functions zapi_ipv4_route() and zapi_ipv6_route(). - Till now all messages sent from a client have the default VRF ID "0" in the header. - The HELLO message is special, which is used as the heart-beat of a client, and has no relation with VRF. The VRF ID in the HELLO message header will always be 0 and ignored by zebra. - Zebra side: - zserv_create_header() adds the VRF ID in the message header. - zebra_client_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the functions which process the received messages. - All relative functions are appended with a new parameter "vrf_id". * Suppress the messages in a VRF which a client does not care: Some clients may not care about the information in the VRF X, and zebra should not send the messages in the VRF X to those clients. Extra flags are used to indicate which VRF is registered by a client, and a new message ZEBRA_VRF_UNREGISTER is introduced to let a client can unregister a VRF when it does not need any information in that VRF. A client sends any message other than ZEBRA_VRF_UNREGISTER in a VRF will automatically register to that VRF. - lib/vrf: A new utility "VRF bit-map" is provided to manage the flags for VRFs, one bit per VRF ID. - Use vrf_bitmap_init()/vrf_bitmap_free() to initialize/free a bit-map; - Use vrf_bitmap_set()/vrf_bitmap_unset() to set/unset a flag in the given bit-map, corresponding to the given VRF ID; - Use vrf_bitmap_check() to test whether the flag, in the given bit-map and for the given VRF ID, is set. - Client side: - In "struct zclient", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] default_information These flags are extended for each VRF, and controlled by the clients themselves (or with the help of zclient_redistribute() and zclient_redistribute_default()). - Zebra side: - In "struct zserv", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] redist_default ifinfo ridinfo These flags are extended for each VRF, as the VRF registration flags. They are maintained on receiving a ZEBRA_XXX_ADD or ZEBRA_XXX_DELETE message. When sending an interface/address/route/router-id message in a VRF to a client, if the corresponding VRF registration flag is not set, this message will not be dropped by zebra. - A new function zread_vrf_unregister() is introduced to process the new command ZEBRA_VRF_UNREGISTER. All the VRF registration flags are cleared for the requested VRF. Those clients, who support only the default VRF, will never receive a message in a non-default VRF, thanks to the filter in zebra. * New callback for the event of successful connection to zebra: - zclient_start() is splitted, keeping only the code of connecting to zebra. - Now zclient_init()=>zclient_connect()=>zclient_start() operations are purely dealing with the connection to zbera. - Once zebra is successfully connected, at the end of zclient_start(), a new callback is used to inform the client about connection. - Till now, in the callback of connect-to-zebra event, all clients send messages to zebra to request the router-id/interface/routes information in the default VRF. Of corse in future the client can do anything it wants in this callback. For example, it may send requests for both default VRF and some non-default VRFs. Signed-off-by: Feng Lu <lu.feng@6wind.com> Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com> Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Acked-by: Donald Sharp <sharpd@cumulusnetworks.com> Conflicts: lib/zclient.h lib/zebra.h zebra/zserv.c zebra/zserv.h Conflicts: bgpd/bgp_nexthop.c bgpd/bgp_nht.c bgpd/bgp_zebra.c isisd/isis_zebra.c lib/zclient.c lib/zclient.h lib/zebra.h nhrpd/nhrp_interface.c nhrpd/nhrp_route.c nhrpd/nhrpd.h ospf6d/ospf6_zebra.c ospf6d/ospf6_zebra.h ospfd/ospf_vty.c ospfd/ospf_zebra.c pimd/pim_zebra.c pimd/pim_zlookup.c ripd/rip_zebra.c ripngd/ripng_zebra.c zebra/redistribute.c zebra/rt_netlink.c zebra/zebra_rnh.c zebra/zebra_rnh.h zebra/zserv.c zebra/zserv.h
2014-10-16 03:52:36 +02:00
{
struct bgp *bgp;
*: add VRF ID in the API message header The API messages are used by zebra to exchange the interfaces, addresses, routes and router-id information with its clients. To distinguish which VRF the information belongs to, a new field "VRF ID" is added in the message header. And hence the message version is increased to 3. * The new field "VRF ID" in the message header: Length (2 bytes) Marker (1 byte) Version (1 byte) VRF ID (2 bytes, newly added) Command (2 bytes) - Client side: - zclient_create_header() adds the VRF ID in the message header. - zclient_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the callback functions registered to the API messages. - All relative functions are appended with a new parameter "vrf_id", including all the callback functions. - "vrf_id" is also added to "struct zapi_ipv4" and "struct zapi_ipv6". Clients need to correctly set the VRF ID when using the API functions zapi_ipv4_route() and zapi_ipv6_route(). - Till now all messages sent from a client have the default VRF ID "0" in the header. - The HELLO message is special, which is used as the heart-beat of a client, and has no relation with VRF. The VRF ID in the HELLO message header will always be 0 and ignored by zebra. - Zebra side: - zserv_create_header() adds the VRF ID in the message header. - zebra_client_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the functions which process the received messages. - All relative functions are appended with a new parameter "vrf_id". * Suppress the messages in a VRF which a client does not care: Some clients may not care about the information in the VRF X, and zebra should not send the messages in the VRF X to those clients. Extra flags are used to indicate which VRF is registered by a client, and a new message ZEBRA_VRF_UNREGISTER is introduced to let a client can unregister a VRF when it does not need any information in that VRF. A client sends any message other than ZEBRA_VRF_UNREGISTER in a VRF will automatically register to that VRF. - lib/vrf: A new utility "VRF bit-map" is provided to manage the flags for VRFs, one bit per VRF ID. - Use vrf_bitmap_init()/vrf_bitmap_free() to initialize/free a bit-map; - Use vrf_bitmap_set()/vrf_bitmap_unset() to set/unset a flag in the given bit-map, corresponding to the given VRF ID; - Use vrf_bitmap_check() to test whether the flag, in the given bit-map and for the given VRF ID, is set. - Client side: - In "struct zclient", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] default_information These flags are extended for each VRF, and controlled by the clients themselves (or with the help of zclient_redistribute() and zclient_redistribute_default()). - Zebra side: - In "struct zserv", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] redist_default ifinfo ridinfo These flags are extended for each VRF, as the VRF registration flags. They are maintained on receiving a ZEBRA_XXX_ADD or ZEBRA_XXX_DELETE message. When sending an interface/address/route/router-id message in a VRF to a client, if the corresponding VRF registration flag is not set, this message will not be dropped by zebra. - A new function zread_vrf_unregister() is introduced to process the new command ZEBRA_VRF_UNREGISTER. All the VRF registration flags are cleared for the requested VRF. Those clients, who support only the default VRF, will never receive a message in a non-default VRF, thanks to the filter in zebra. * New callback for the event of successful connection to zebra: - zclient_start() is splitted, keeping only the code of connecting to zebra. - Now zclient_init()=>zclient_connect()=>zclient_start() operations are purely dealing with the connection to zbera. - Once zebra is successfully connected, at the end of zclient_start(), a new callback is used to inform the client about connection. - Till now, in the callback of connect-to-zebra event, all clients send messages to zebra to request the router-id/interface/routes information in the default VRF. Of corse in future the client can do anything it wants in this callback. For example, it may send requests for both default VRF and some non-default VRFs. Signed-off-by: Feng Lu <lu.feng@6wind.com> Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com> Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Acked-by: Donald Sharp <sharpd@cumulusnetworks.com> Conflicts: lib/zclient.h lib/zebra.h zebra/zserv.c zebra/zserv.h Conflicts: bgpd/bgp_nexthop.c bgpd/bgp_nht.c bgpd/bgp_zebra.c isisd/isis_zebra.c lib/zclient.c lib/zclient.h lib/zebra.h nhrpd/nhrp_interface.c nhrpd/nhrp_route.c nhrpd/nhrpd.h ospf6d/ospf6_zebra.c ospf6d/ospf6_zebra.h ospfd/ospf_vty.c ospfd/ospf_zebra.c pimd/pim_zebra.c pimd/pim_zlookup.c ripd/rip_zebra.c ripngd/ripng_zebra.c zebra/redistribute.c zebra/rt_netlink.c zebra/zebra_rnh.c zebra/zebra_rnh.h zebra/zserv.c zebra/zserv.h
2014-10-16 03:52:36 +02:00
zclient_num_connects++; /* increment even if not responding */
/* At this point, we may or may not have BGP instances configured, but
* we're only interested in the default VRF (others wouldn't have learnt
* the VRF from Zebra yet.)
*/
bgp = bgp_get_default();
if (!bgp)
return;
bgp_zebra_instance_register(bgp);
/* Send the client registration */
bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, bgp->vrf_id);
bfd: Fix for missing BFD client regs/deregs from quagga clients Ticket: CM-11256 Signed-off-by: Radhika Mahankali <radhika@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Kanna Rajagopal <kanna@cumulusnetworks.com> Testing: Unit, PTM smoke, OSPF smoke, BGP Smoke Issue: BFD client registrations are not being sent to PTM from BGP/OSPF clients when the quagga clients have no BFD configuration. This can create stale BFD sessions in PTM when BFD is removed from quagga configuration before quagga is restarted. BFD client de-registrations from BGP/OSPF also go missing sometimes when quagga is restarted. This also will cause stale BFD sessions in PTM. Root Cause: BFD client registrations were being sent at the time of BGP/OSPF daemon initialization. But, they were being sent to zebra before the socket connection between zebra and BGP/OSPF was established. This causes the missing BFD client registrations. BFD client de-registrations are sent from zebra when zebra detects socket close for BGP/OSPF daemons. Based on the timing, the de-registrations may happen after socket between PTM and zebra is closed. This will result in missing de-registrations. Fix: Moved sending of BFD client registration messages to zebra connected callback to make sure that they are sent after the BGP/OSPF daemons connect with zebra. Added BFD client de-registrations for BGP/OSPF to be also sent when zebra daemon gets restart signal. They are sent from the signal handler only if it was not already handled in zebra client socket close callback.
2016-06-21 12:39:58 +02:00
/* tell label pool that zebra is connected */
bgp_lp_event_zebra_up();
/* TODO - What if we have peers and networks configured, do we have to
* kick-start them?
*/
BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
*: add VRF ID in the API message header The API messages are used by zebra to exchange the interfaces, addresses, routes and router-id information with its clients. To distinguish which VRF the information belongs to, a new field "VRF ID" is added in the message header. And hence the message version is increased to 3. * The new field "VRF ID" in the message header: Length (2 bytes) Marker (1 byte) Version (1 byte) VRF ID (2 bytes, newly added) Command (2 bytes) - Client side: - zclient_create_header() adds the VRF ID in the message header. - zclient_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the callback functions registered to the API messages. - All relative functions are appended with a new parameter "vrf_id", including all the callback functions. - "vrf_id" is also added to "struct zapi_ipv4" and "struct zapi_ipv6". Clients need to correctly set the VRF ID when using the API functions zapi_ipv4_route() and zapi_ipv6_route(). - Till now all messages sent from a client have the default VRF ID "0" in the header. - The HELLO message is special, which is used as the heart-beat of a client, and has no relation with VRF. The VRF ID in the HELLO message header will always be 0 and ignored by zebra. - Zebra side: - zserv_create_header() adds the VRF ID in the message header. - zebra_client_read() extracts and validates the VRF ID from the header, and passes the VRF ID to the functions which process the received messages. - All relative functions are appended with a new parameter "vrf_id". * Suppress the messages in a VRF which a client does not care: Some clients may not care about the information in the VRF X, and zebra should not send the messages in the VRF X to those clients. Extra flags are used to indicate which VRF is registered by a client, and a new message ZEBRA_VRF_UNREGISTER is introduced to let a client can unregister a VRF when it does not need any information in that VRF. A client sends any message other than ZEBRA_VRF_UNREGISTER in a VRF will automatically register to that VRF. - lib/vrf: A new utility "VRF bit-map" is provided to manage the flags for VRFs, one bit per VRF ID. - Use vrf_bitmap_init()/vrf_bitmap_free() to initialize/free a bit-map; - Use vrf_bitmap_set()/vrf_bitmap_unset() to set/unset a flag in the given bit-map, corresponding to the given VRF ID; - Use vrf_bitmap_check() to test whether the flag, in the given bit-map and for the given VRF ID, is set. - Client side: - In "struct zclient", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] default_information These flags are extended for each VRF, and controlled by the clients themselves (or with the help of zclient_redistribute() and zclient_redistribute_default()). - Zebra side: - In "struct zserv", the following flags are changed from "u_char" to "vrf_bitmap_t": redist[ZEBRA_ROUTE_MAX] redist_default ifinfo ridinfo These flags are extended for each VRF, as the VRF registration flags. They are maintained on receiving a ZEBRA_XXX_ADD or ZEBRA_XXX_DELETE message. When sending an interface/address/route/router-id message in a VRF to a client, if the corresponding VRF registration flag is not set, this message will not be dropped by zebra. - A new function zread_vrf_unregister() is introduced to process the new command ZEBRA_VRF_UNREGISTER. All the VRF registration flags are cleared for the requested VRF. Those clients, who support only the default VRF, will never receive a message in a non-default VRF, thanks to the filter in zebra. * New callback for the event of successful connection to zebra: - zclient_start() is splitted, keeping only the code of connecting to zebra. - Now zclient_init()=>zclient_connect()=>zclient_start() operations are purely dealing with the connection to zbera. - Once zebra is successfully connected, at the end of zclient_start(), a new callback is used to inform the client about connection. - Till now, in the callback of connect-to-zebra event, all clients send messages to zebra to request the router-id/interface/routes information in the default VRF. Of corse in future the client can do anything it wants in this callback. For example, it may send requests for both default VRF and some non-default VRFs. Signed-off-by: Feng Lu <lu.feng@6wind.com> Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com> Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Acked-by: Donald Sharp <sharpd@cumulusnetworks.com> Conflicts: lib/zclient.h lib/zebra.h zebra/zserv.c zebra/zserv.h Conflicts: bgpd/bgp_nexthop.c bgpd/bgp_nht.c bgpd/bgp_zebra.c isisd/isis_zebra.c lib/zclient.c lib/zclient.h lib/zebra.h nhrpd/nhrp_interface.c nhrpd/nhrp_route.c nhrpd/nhrpd.h ospf6d/ospf6_zebra.c ospf6d/ospf6_zebra.h ospfd/ospf_vty.c ospfd/ospf_zebra.c pimd/pim_zebra.c pimd/pim_zlookup.c ripd/rip_zebra.c ripngd/ripng_zebra.c zebra/redistribute.c zebra/rt_netlink.c zebra/zebra_rnh.c zebra/zebra_rnh.h zebra/zserv.c zebra/zserv.h
2014-10-16 03:52:36 +02:00
}
static int bgp_zebra_process_local_es(ZAPI_CALLBACK_ARGS)
{
esi_t esi;
struct bgp *bgp = NULL;
struct stream *s = NULL;
char buf[ESI_STR_LEN];
char buf1[INET6_ADDRSTRLEN];
struct ipaddr originator_ip;
memset(&esi, 0, sizeof(esi_t));
memset(&originator_ip, 0, sizeof(struct ipaddr));
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
s = zclient->ibuf;
stream_get(&esi, s, sizeof(esi_t));
stream_get(&originator_ip, s, sizeof(struct ipaddr));
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx %s ESI %s originator-ip %s",
(cmd == ZEBRA_LOCAL_ES_ADD) ? "add" : "del",
esi_to_str(&esi, buf, sizeof(buf)),
ipaddr2str(&originator_ip, buf1, sizeof(buf1)));
if (cmd == ZEBRA_LOCAL_ES_ADD)
bgp_evpn_local_es_add(bgp, &esi, &originator_ip);
else
bgp_evpn_local_es_del(bgp, &esi, &originator_ip);
return 0;
}
static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
{
int filter = 0;
char buf[ETHER_ADDR_STRLEN];
vni_t l3vni = 0;
struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
struct in_addr originator_ip;
struct stream *s;
ifindex_t svi_ifindex;
bool is_anycast_mac = false;
char buf1[ETHER_ADDR_STRLEN];
memset(&svi_rmac, 0, sizeof(struct ethaddr));
memset(&originator_ip, 0, sizeof(struct in_addr));
s = zclient->ibuf;
l3vni = stream_getl(s);
if (cmd == ZEBRA_L3VNI_ADD) {
stream_get(&svi_rmac, s, sizeof(struct ethaddr));
originator_ip.s_addr = stream_get_ipv4(s);
stream_get(&filter, s, sizeof(int));
svi_ifindex = stream_getl(s);
stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
is_anycast_mac = stream_getl(s);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx L3-VNI ADD VRF %s VNI %u RMAC svi-mac %s vrr-mac %s filter %s svi-if %u",
vrf_id_to_name(vrf_id), l3vni,
prefix_mac2str(&svi_rmac, buf, sizeof(buf)),
prefix_mac2str(&vrr_rmac, buf1,
sizeof(buf1)),
filter ? "prefix-routes-only" : "none",
svi_ifindex);
bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
originator_ip, filter, svi_ifindex,
is_anycast_mac);
} else {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx L3-VNI DEL VRF %s VNI %u",
vrf_id_to_name(vrf_id), l3vni);
bgp_evpn_local_l3vni_del(l3vni, vrf_id);
}
return 0;
}
static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
{
struct stream *s;
vni_t vni;
struct bgp *bgp;
struct in_addr vtep_ip = {INADDR_ANY};
vrf_id_t tenant_vrf_id = VRF_DEFAULT;
struct in_addr mcast_grp = {INADDR_ANY};
s = zclient->ibuf;
vni = stream_getl(s);
if (cmd == ZEBRA_VNI_ADD) {
vtep_ip.s_addr = stream_get_ipv4(s);
stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
mcast_grp.s_addr = stream_get_ipv4(s);
}
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
(cmd == ZEBRA_VNI_ADD) ? "add" : "del",
vrf_id_to_name(vrf_id), vni,
vrf_id_to_name(tenant_vrf_id));
if (cmd == ZEBRA_VNI_ADD)
return bgp_evpn_local_vni_add(
bgp, vni,
vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
tenant_vrf_id, mcast_grp);
else
return bgp_evpn_local_vni_del(bgp, vni);
}
static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
{
struct stream *s;
vni_t vni;
struct bgp *bgp;
struct ethaddr mac;
struct ipaddr ip;
int ipa_len;
char buf[ETHER_ADDR_STRLEN];
char buf1[INET6_ADDRSTRLEN];
bgpd, zebra: EVPN extended mobility support Implement procedures similar to what is specified in https://tools.ietf.org/html/draft-malhotra-bess-evpn-irb-extended-mobility in order to support extended mobility scenarios in EVPN. These are scenarios where a host/VM move results in a different (MAC,IP) binding from earlier. For example, a host with an address assignment (IP1, MAC1) moves behind a different PE (VTEP) and has an address assignment of (IP1, MAC2) or a host with an address assignment (IP5, MAC5) has a different assignment of (IP6, MAC5) after the move. Note that while these are described as "move" scenarios, they also cover the situation when a VM is shut down and a new VM is spun up at a different location that reuses the IP address or MAC address of the earlier instance, but not both. Yet another scenario is a MAC change for an attached host/VM i.e., when the MAC of an attached host changes from MAC1 to MAC2. This is necessary because there may already be a non-zero sequence number associated with MAC2. Also, even though (IP, MAC1) is withdrawn before (IP, MAC2) is advertised, they may propagate through the network differently. The procedures continue to rely on the MAC mobility extended community specified in RFC 7432 and already supported by the implementation, but augment it with a inheritance mechanism that understands the relationship of the host MACIP (ARP/neighbor table entry) to the underlying MAC (MAC forwarding database entry). In FRR, this relationship is understood by the zebra component which doubles as the "host mobility manager", so the MAC mobility sequence numbers are determined through interaction between bgpd and zebra. Signed-off-by: Vivek Venkatraman <vivek@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
2018-08-20 21:20:06 +02:00
uint8_t flags = 0;
uint32_t seqnum = 0;
int state = 0;
memset(&ip, 0, sizeof(ip));
s = zclient->ibuf;
vni = stream_getl(s);
stream_get(&mac.octet, s, ETH_ALEN);
ipa_len = stream_getl(s);
if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
&& ipa_len != IPV6_MAX_BYTELEN) {
flog_err(EC_BGP_MACIP_LEN,
"%u:Recv MACIP %s with invalid IP addr length %d",
vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
ipa_len);
return -1;
}
if (ipa_len) {
ip.ipa_type =
(ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
stream_get(&ip.ip.addr, s, ipa_len);
}
if (cmd == ZEBRA_MACIP_ADD) {
bgpd, zebra: EVPN extended mobility support Implement procedures similar to what is specified in https://tools.ietf.org/html/draft-malhotra-bess-evpn-irb-extended-mobility in order to support extended mobility scenarios in EVPN. These are scenarios where a host/VM move results in a different (MAC,IP) binding from earlier. For example, a host with an address assignment (IP1, MAC1) moves behind a different PE (VTEP) and has an address assignment of (IP1, MAC2) or a host with an address assignment (IP5, MAC5) has a different assignment of (IP6, MAC5) after the move. Note that while these are described as "move" scenarios, they also cover the situation when a VM is shut down and a new VM is spun up at a different location that reuses the IP address or MAC address of the earlier instance, but not both. Yet another scenario is a MAC change for an attached host/VM i.e., when the MAC of an attached host changes from MAC1 to MAC2. This is necessary because there may already be a non-zero sequence number associated with MAC2. Also, even though (IP, MAC1) is withdrawn before (IP, MAC2) is advertised, they may propagate through the network differently. The procedures continue to rely on the MAC mobility extended community specified in RFC 7432 and already supported by the implementation, but augment it with a inheritance mechanism that understands the relationship of the host MACIP (ARP/neighbor table entry) to the underlying MAC (MAC forwarding database entry). In FRR, this relationship is understood by the zebra component which doubles as the "host mobility manager", so the MAC mobility sequence numbers are determined through interaction between bgpd and zebra. Signed-off-by: Vivek Venkatraman <vivek@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
2018-08-20 21:20:06 +02:00
flags = stream_getc(s);
seqnum = stream_getl(s);
} else {
state = stream_getl(s);
bgpd, zebra: EVPN extended mobility support Implement procedures similar to what is specified in https://tools.ietf.org/html/draft-malhotra-bess-evpn-irb-extended-mobility in order to support extended mobility scenarios in EVPN. These are scenarios where a host/VM move results in a different (MAC,IP) binding from earlier. For example, a host with an address assignment (IP1, MAC1) moves behind a different PE (VTEP) and has an address assignment of (IP1, MAC2) or a host with an address assignment (IP5, MAC5) has a different assignment of (IP6, MAC5) after the move. Note that while these are described as "move" scenarios, they also cover the situation when a VM is shut down and a new VM is spun up at a different location that reuses the IP address or MAC address of the earlier instance, but not both. Yet another scenario is a MAC change for an attached host/VM i.e., when the MAC of an attached host changes from MAC1 to MAC2. This is necessary because there may already be a non-zero sequence number associated with MAC2. Also, even though (IP, MAC1) is withdrawn before (IP, MAC2) is advertised, they may propagate through the network differently. The procedures continue to rely on the MAC mobility extended community specified in RFC 7432 and already supported by the implementation, but augment it with a inheritance mechanism that understands the relationship of the host MACIP (ARP/neighbor table entry) to the underlying MAC (MAC forwarding database entry). In FRR, this relationship is understood by the zebra component which doubles as the "host mobility manager", so the MAC mobility sequence numbers are determined through interaction between bgpd and zebra. Signed-off-by: Vivek Venkatraman <vivek@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
2018-08-20 21:20:06 +02:00
}
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%u:Recv MACIP %s flags 0x%x MAC %s IP %s VNI %u seq %u state %d",
vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
flags, prefix_mac2str(&mac, buf, sizeof(buf)),
ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum,
state);
if (cmd == ZEBRA_MACIP_ADD)
bgpd, zebra: EVPN extended mobility support Implement procedures similar to what is specified in https://tools.ietf.org/html/draft-malhotra-bess-evpn-irb-extended-mobility in order to support extended mobility scenarios in EVPN. These are scenarios where a host/VM move results in a different (MAC,IP) binding from earlier. For example, a host with an address assignment (IP1, MAC1) moves behind a different PE (VTEP) and has an address assignment of (IP1, MAC2) or a host with an address assignment (IP5, MAC5) has a different assignment of (IP6, MAC5) after the move. Note that while these are described as "move" scenarios, they also cover the situation when a VM is shut down and a new VM is spun up at a different location that reuses the IP address or MAC address of the earlier instance, but not both. Yet another scenario is a MAC change for an attached host/VM i.e., when the MAC of an attached host changes from MAC1 to MAC2. This is necessary because there may already be a non-zero sequence number associated with MAC2. Also, even though (IP, MAC1) is withdrawn before (IP, MAC2) is advertised, they may propagate through the network differently. The procedures continue to rely on the MAC mobility extended community specified in RFC 7432 and already supported by the implementation, but augment it with a inheritance mechanism that understands the relationship of the host MACIP (ARP/neighbor table entry) to the underlying MAC (MAC forwarding database entry). In FRR, this relationship is understood by the zebra component which doubles as the "host mobility manager", so the MAC mobility sequence numbers are determined through interaction between bgpd and zebra. Signed-off-by: Vivek Venkatraman <vivek@cumulusnetworks.com> Reviewed-by: Donald Sharp <sharpd@cumulusnetworks.com> Reviewed-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
2018-08-20 21:20:06 +02:00
return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
flags, seqnum);
else
return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
}
static void bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
{
struct stream *s = NULL;
struct bgp *bgp_vrf = NULL;
struct prefix p;
char buf[PREFIX_STRLEN];
memset(&p, 0, sizeof(struct prefix));
s = zclient->ibuf;
stream_get(&p, s, sizeof(struct prefix));
bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp_vrf)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Recv prefix %s %s on vrf %s",
prefix2str(&p, buf, sizeof(buf)),
(cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
vrf_id_to_name(vrf_id));
if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
if (p.family == AF_INET)
bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
AFI_IP, SAFI_UNICAST);
else
bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
AFI_IP6, SAFI_UNICAST);
} else {
if (p.family == AF_INET)
bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
SAFI_UNICAST);
else
bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
SAFI_UNICAST);
}
}
static void bgp_zebra_process_label_chunk(ZAPI_CALLBACK_ARGS)
{
struct stream *s = NULL;
uint8_t response_keep;
uint32_t first;
uint32_t last;
uint8_t proto;
unsigned short instance;
s = zclient->ibuf;
STREAM_GETC(s, proto);
STREAM_GETW(s, instance);
STREAM_GETC(s, response_keep);
STREAM_GETL(s, first);
STREAM_GETL(s, last);
if (zclient->redist_default != proto) {
flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
proto);
return;
}
if (zclient->instance != instance) {
flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
proto);
return;
}
if (first > last ||
first < MPLS_LABEL_UNRESERVED_MIN ||
last > MPLS_LABEL_UNRESERVED_MAX) {
flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
__func__, first, last);
return;
}
if (BGP_DEBUG(zebra, ZEBRA)) {
zlog_debug("Label Chunk assign: %u - %u (%u) ",
first, last, response_keep);
}
bgp_lp_event_chunk(response_keep, first, last);
stream_failure: /* for STREAM_GETX */
return;
}
extern struct zebra_privs_t bgpd_privs;
static int bgp_ifp_create(struct interface *ifp)
{
struct bgp *bgp;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf add VRF %u IF %s", ifp->vrf_id, ifp->name);
bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
if (!bgp)
return 0;
bgp_mac_add_mac_entry(ifp);
bgp_update_interface_nbrs(bgp, ifp, ifp);
return 0;
}
void bgp_zebra_init(struct thread_master *master, unsigned short instance)
2002-12-13 21:15:29 +01:00
{
zclient_num_connects = 0;
if_zapi_callbacks(bgp_ifp_create, bgp_ifp_up,
bgp_ifp_down, bgp_ifp_destroy);
/* Set default values. */
zclient = zclient_new(master, &zclient_options_default);
zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
zclient->zebra_connected = bgp_zebra_connected;
zclient->router_id_update = bgp_router_id_update;
zclient->interface_address_add = bgp_interface_address_add;
zclient->interface_address_delete = bgp_interface_address_delete;
zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
zclient->interface_nbr_address_delete =
bgp_interface_nbr_address_delete;
zclient->interface_vrf_update = bgp_interface_vrf_update;
zclient->redistribute_route_add = zebra_read_route;
zclient->redistribute_route_del = zebra_read_route;
zclient->nexthop_update = bgp_read_nexthop_update;
zclient->import_check_update = bgp_read_import_check_update;
zclient->fec_update = bgp_read_fec_update;
zclient->local_es_add = bgp_zebra_process_local_es;
zclient->local_es_del = bgp_zebra_process_local_es;
zclient->local_vni_add = bgp_zebra_process_local_vni;
zclient->local_vni_del = bgp_zebra_process_local_vni;
zclient->local_macip_add = bgp_zebra_process_local_macip;
zclient->local_macip_del = bgp_zebra_process_local_macip;
zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
zclient->label_chunk = bgp_zebra_process_label_chunk;
zclient->rule_notify_owner = rule_notify_owner;
zclient->ipset_notify_owner = ipset_notify_owner;
zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
zclient->iptable_notify_owner = iptable_notify_owner;
zclient->instance = instance;
2002-12-13 21:15:29 +01:00
}
void bgp_zebra_destroy(void)
{
if (zclient == NULL)
return;
zclient_stop(zclient);
zclient_free(zclient);
zclient = NULL;
}
int bgp_zebra_num_connects(void)
{
return zclient_num_connects;
}
void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
struct bgp_pbr_rule *pbr,
bool install)
{
struct stream *s;
if (pbra->install_in_progress && !pbr)
return;
if (pbr && pbr->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA)) {
if (pbr)
zlog_debug("%s: table %d (ip rule) %d", __func__,
pbra->table_id, install);
else
zlog_debug("%s: table %d fwmark %d %d", __func__,
pbra->table_id, pbra->fwmark, install);
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
VRF_DEFAULT);
stream_putl(s, 1); /* send one pbr action */
bgp_encode_pbr_rule_action(s, pbra, pbr);
stream_putw_at(s, 0, stream_get_endp(s));
if (!zclient_send_message(zclient) && install) {
if (!pbr)
pbra->install_in_progress = true;
else
pbr->install_in_progress = true;
}
}
void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
{
struct stream *s;
if (pbrim->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s type %d %d, ID %u", __func__,
pbrim->ipset_name, pbrim->type, install,
pbrim->unique);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPSET_CREATE :
ZEBRA_IPSET_DESTROY,
VRF_DEFAULT);
stream_putl(s, 1); /* send one pbr action */
bgp_encode_pbr_ipset_match(s, pbrim);
stream_putw_at(s, 0, stream_get_endp(s));
if (!zclient_send_message(zclient) && install)
pbrim->install_in_progress = true;
}
void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
bool install)
{
struct stream *s;
if (pbrime->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s %d %d, ID %u", __func__,
pbrime->backpointer->ipset_name, pbrime->unique,
install, pbrime->unique);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPSET_ENTRY_ADD :
ZEBRA_IPSET_ENTRY_DELETE,
VRF_DEFAULT);
stream_putl(s, 1); /* send one pbr action */
bgp_encode_pbr_ipset_entry_match(s, pbrime);
stream_putw_at(s, 0, stream_get_endp(s));
if (!zclient_send_message(zclient) && install)
pbrime->install_in_progress = true;
}
static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s)
{
struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
struct bgp_pbr_interface_head *head;
struct bgp_pbr_interface *pbr_if;
struct interface *ifp;
if (!bgp_pbr_cfg)
return;
head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
if (ifp)
stream_putl(s, ifp->ifindex);
}
}
static int bgp_pbr_get_ifnumber(struct bgp *bgp)
{
struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
struct bgp_pbr_interface_head *head;
struct bgp_pbr_interface *pbr_if;
int cnt = 0;
if (!bgp_pbr_cfg)
return 0;
head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
cnt++;
}
return cnt;
}
void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
struct bgp_pbr_match *pbm,
bool install)
{
struct stream *s;
int ret = 0;
int nb_interface;
if (pbm->install_iptable_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s type %d mark %d %d, ID %u", __func__,
pbm->ipset_name, pbm->type, pba->fwmark, install,
pbm->unique2);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPTABLE_ADD :
ZEBRA_IPTABLE_DELETE,
VRF_DEFAULT);
bgp_encode_pbr_iptable_match(s, pba, pbm);
nb_interface = bgp_pbr_get_ifnumber(pba->bgp);
stream_putl(s, nb_interface);
if (nb_interface)
bgp_encode_pbr_interface_list(pba->bgp, s);
stream_putw_at(s, 0, stream_get_endp(s));
ret = zclient_send_message(zclient);
if (install) {
if (ret)
pba->refcnt++;
else
pbm->install_iptable_in_progress = true;
}
}
/* inject in table <table_id> a default route to:
* - if nexthop IP is present : to this nexthop
* - if vrf is different from local : to the matching VRF
*/
void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
afi_t afi, uint32_t table_id, bool announce)
{
struct zapi_nexthop *api_nh;
struct zapi_route api;
struct prefix p;
if (!nh || nh->type != NEXTHOP_TYPE_IPV4
|| nh->vrf_id == VRF_UNKNOWN)
return;
memset(&p, 0, sizeof(struct prefix));
/* default route */
if (afi != AFI_IP)
return;
p.family = AF_INET;
memset(&api, 0, sizeof(api));
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = SAFI_UNICAST;
api.prefix = p;
api.tableid = table_id;
api.nexthop_num = 1;
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
api_nh = &api.nexthops[0];
api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
/* redirect IP */
if (nh->gate.ipv4.s_addr != INADDR_ANY) {
char buff[PREFIX_STRLEN];
api_nh->vrf_id = nh->vrf_id;
api_nh->gate.ipv4 = nh->gate.ipv4;
api_nh->type = NEXTHOP_TYPE_IPV4;
inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_info("BGP: %s default route to %s table %d (redirect IP)",
announce ? "adding" : "withdrawing",
buff, table_id);
zclient_route_send(announce ? ZEBRA_ROUTE_ADD
: ZEBRA_ROUTE_DELETE,
zclient, &api);
} else if (nh->vrf_id != bgp->vrf_id) {
struct vrf *vrf;
struct interface *ifp;
vrf = vrf_lookup_by_id(nh->vrf_id);
if (!vrf)
return;
/* create default route with interface <VRF>
* with nexthop-vrf <VRF>
*/
ifp = if_lookup_by_name_all_vrf(vrf->name);
if (!ifp)
return;
api_nh->vrf_id = nh->vrf_id;
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = ifp->ifindex;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
announce ? "adding" : "withdrawing",
vrf->name, table_id);
zclient_route_send(announce ? ZEBRA_ROUTE_ADD
: ZEBRA_ROUTE_DELETE,
zclient, &api);
return;
}
}
/* Send capabilities to RIB */
int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
{
struct zapi_cap api;
int ret = BGP_GR_SUCCESS;
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("zclient invalid");
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("client not connected");
return BGP_GR_FAILURE;
}
/* Check if capability is already sent. If the flag force is set
* send the capability since this can be initial bgp configuration
*/
memset(&api, 0, sizeof(struct zapi_cap));
if (disable) {
api.cap = ZEBRA_CLIENT_GR_DISABLE;
api.vrf_id = bgp->vrf_id;
} else {
api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
api.stale_removal_time = bgp->rib_stale_time;
api.vrf_id = bgp->vrf_id;
}
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
< 0) {
zlog_err("error sending capability");
ret = BGP_GR_FAILURE;
} else {
if (disable)
bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
else
bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("send capabilty success");
ret = BGP_GR_SUCCESS;
}
return ret;
}
/* Send route update pesding or completed status to RIB for the
* specific AFI, SAFI
*/
int bgp_zebra_update(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type)
{
struct zapi_cap api = {0};
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("zclient == NULL, invalid");
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("client not connected");
return BGP_GR_FAILURE;
}
api.afi = afi;
api.safi = safi;
api.vrf_id = vrf_id;
api.cap = type;
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
< 0) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("error sending capability");
return BGP_GR_FAILURE;
}
return BGP_GR_SUCCESS;
}
/* Send RIB stale timer update */
int bgp_zebra_stale_timer_update(struct bgp *bgp)
{
struct zapi_cap api;
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("zclient invalid");
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("client not connected");
return BGP_GR_FAILURE;
}
memset(&api, 0, sizeof(struct zapi_cap));
api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
api.stale_removal_time = bgp->rib_stale_time;
api.vrf_id = bgp->vrf_id;
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
< 0) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("error sending capability");
return BGP_GR_FAILURE;
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("send capabilty success");
return BGP_GR_SUCCESS;
}