frr/bgpd/bgp_zebra.c
Donatas Abraitis ace4b8fe61 bgpd: Print the real reason why the peer is not accepted (incoming)
If it's suppressed due to BFD down or unspecified connection, we never know
the real reason and just say "no AF activated" which is misleading.

Signed-off-by: Donatas Abraitis <donatas@opensourcerouting.org>
2025-03-17 14:52:42 +02:00

4643 lines
123 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* zebra client
* Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
* Copyright (c) 2023 LabN Consulting, L.L.C.
*/
#include <zebra.h>
#include "command.h"
#include "stream.h"
#include "network.h"
#include "prefix.h"
#include "log.h"
#include "sockunion.h"
#include "zclient.h"
#include "routemap.h"
#include "frrevent.h"
#include "queue.h"
#include "memory.h"
#include "lib/json.h"
#include "lib/bfd.h"
#include "lib/route_opaque.h"
#include "filter.h"
#include "mpls.h"
#include "vxlan.h"
#include "pbr.h"
#include "frrdistance.h"
#include "bgpd/bgpd.h"
#include "bgpd/bgp_route.h"
#include "bgpd/bgp_attr.h"
#include "bgpd/bgp_aspath.h"
#include "bgpd/bgp_nexthop.h"
#include "bgpd/bgp_zebra.h"
#include "bgpd/bgp_fsm.h"
#include "bgpd/bgp_debug.h"
#include "bgpd/bgp_errors.h"
#include "bgpd/bgp_mpath.h"
#include "bgpd/bgp_nexthop.h"
#include "bgpd/bgp_nht.h"
#include "bgpd/bgp_bfd.h"
#include "bgpd/bgp_label.h"
#ifdef ENABLE_BGP_VNC
#include "bgpd/rfapi/rfapi_backend.h"
#include "bgpd/rfapi/vnc_export_bgp.h"
#endif
#include "bgpd/bgp_evpn.h"
#include "bgpd/bgp_mplsvpn.h"
#include "bgpd/bgp_labelpool.h"
#include "bgpd/bgp_pbr.h"
#include "bgpd/bgp_evpn_private.h"
#include "bgpd/bgp_evpn_mh.h"
#include "bgpd/bgp_mac.h"
#include "bgpd/bgp_trace.h"
#include "bgpd/bgp_community.h"
#include "bgpd/bgp_lcommunity.h"
/* All information about zebra. */
struct zclient *zclient = NULL;
struct zclient *zclient_sync;
static bool bgp_zebra_label_manager_connect(void);
/* hook to indicate vrf status change for SNMP */
DEFINE_HOOK(bgp_vrf_status_changed, (struct bgp *bgp, struct interface *ifp),
(bgp, ifp));
DEFINE_MTYPE_STATIC(BGPD, BGP_IF_INFO, "BGP interface context");
/* Can we install into zebra? */
static inline bool bgp_install_info_to_zebra(struct bgp *bgp)
{
if (zclient->sock <= 0)
return false;
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, not installing information",
__func__);
return false;
}
return true;
}
int zclient_num_connects;
/* Router-id update message from zebra. */
static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
{
struct prefix router_id;
zebra_router_id_update_read(zclient->ibuf, &router_id);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Router Id update VRF %u Id %pFX", vrf_id,
&router_id);
bgp_router_id_zebra_bump(vrf_id, &router_id);
return 0;
}
/* Set or clear interface on which unnumbered neighbor is configured. This
* would in turn cause BGP to initiate or turn off IPv6 RAs on this
* interface.
*/
static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
struct interface *upd_ifp)
{
struct listnode *node, *nnode;
struct peer *peer;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
if (upd_ifp) {
peer->ifp = upd_ifp;
bgp_zebra_initiate_radv(bgp, peer);
} else {
bgp_zebra_terminate_radv(bgp, peer);
peer->ifp = upd_ifp;
}
}
}
}
static int bgp_read_fec_update(ZAPI_CALLBACK_ARGS)
{
bgp_parse_fec_update();
return 0;
}
static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
{
struct listnode *node, *nnode;
struct peer *peer;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0) &&
!peer_established(peer->connection)) {
if (peer_active(peer->connection) == BGP_PEER_ACTIVE)
BGP_EVENT_ADD(peer->connection, BGP_Stop);
BGP_EVENT_ADD(peer->connection, BGP_Start);
}
}
}
static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
{
struct connected *connected;
struct interface *ifp;
struct prefix *p;
/* Kick-off the FSM for any relevant peers only if there is a
* valid local address on the interface.
*/
ifp = ifc->ifp;
frr_each (if_connected, ifp->connected, connected) {
p = connected->address;
if (p->family == AF_INET6
&& IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
break;
}
if (!connected)
return;
bgp_start_interface_nbrs(bgp, ifp);
}
static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
int del)
{
struct listnode *node, *nnode;
struct peer *peer;
struct interface *ifp;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (peer->conf_if
&& (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
BGP_EVENT_ADD(peer->connection, BGP_Stop);
}
}
/* Free neighbor also, if we're asked to. */
if (del) {
ifp = ifc->ifp;
listnode_delete(ifp->nbr_connected, ifc);
nbr_connected_free(ifc);
}
}
static int bgp_ifp_destroy(struct interface *ifp)
{
struct bgp *bgp;
bgp = ifp->vrf->info;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf del VRF %s IF %s", ifp->vrf->name,
ifp->name);
if (bgp) {
bgp_update_interface_nbrs(bgp, ifp, NULL);
hook_call(bgp_vrf_status_changed, bgp, ifp);
}
bgp_mac_del_mac_entry(ifp);
return 0;
}
static int bgp_ifp_up(struct interface *ifp)
{
struct connected *c;
struct nbr_connected *nc;
struct listnode *node, *nnode;
struct bgp *bgp;
bgp = ifp->vrf->info;
bgp_mac_add_mac_entry(ifp);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf up VRF %s IF %s", ifp->vrf->name, ifp->name);
if (!bgp)
return 0;
frr_each (if_connected, ifp->connected, c)
bgp_connected_add(bgp, c);
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_add(bgp, nc);
hook_call(bgp_vrf_status_changed, bgp, ifp);
bgp_nht_ifp_up(ifp);
if (bgp_get_default() && if_is_vrf(ifp)) {
vpn_leak_zebra_vrf_label_update(bgp, AFI_IP);
vpn_leak_zebra_vrf_label_update(bgp, AFI_IP6);
vpn_leak_zebra_vrf_sid_update(bgp, AFI_IP);
vpn_leak_zebra_vrf_sid_update(bgp, AFI_IP6);
vpn_leak_postchange_all();
}
return 0;
}
static int bgp_ifp_down(struct interface *ifp)
{
struct connected *c;
struct nbr_connected *nc;
struct listnode *node, *nnode;
struct bgp *bgp;
struct peer *peer;
bgp = ifp->vrf->info;
bgp_mac_del_mac_entry(ifp);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf down VRF %s IF %s", ifp->vrf->name,
ifp->name);
if (!bgp)
return 0;
frr_each (if_connected, ifp->connected, c)
bgp_connected_delete(bgp, c);
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
bgp_nbr_connected_delete(bgp, nc, 1);
/* Fast external-failover */
if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
/* Take down directly connected peers. */
if ((peer->ttl != BGP_DEFAULT_TTL)
&& (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED))
continue;
if (ifp == peer->nexthop.ifp) {
BGP_EVENT_ADD(peer->connection, BGP_Stop);
peer->last_reset = PEER_DOWN_IF_DOWN;
}
}
}
hook_call(bgp_vrf_status_changed, bgp, ifp);
bgp_nht_ifp_down(ifp);
if (bgp_get_default() && if_is_vrf(ifp)) {
vpn_leak_zebra_vrf_label_withdraw(bgp, AFI_IP);
vpn_leak_zebra_vrf_label_withdraw(bgp, AFI_IP6);
vpn_leak_zebra_vrf_sid_withdraw(bgp, AFI_IP);
vpn_leak_zebra_vrf_sid_withdraw(bgp, AFI_IP6);
vpn_leak_postchange_all();
}
return 0;
}
static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
{
struct connected *ifc;
struct bgp *bgp;
struct peer *peer;
struct prefix *addr;
struct listnode *node, *nnode;
afi_t afi;
safi_t safi;
bgp = bgp_lookup_by_vrf_id(vrf_id);
ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address))
zlog_debug("Rx Intf address add VRF %s IF %s addr %pFX",
ifc->ifp->vrf->name, ifc->ifp->name, ifc->address);
if (!bgp)
return 0;
if (if_is_operative(ifc->ifp)) {
bgp_connected_add(bgp, ifc);
/* If we have learnt of any neighbors on this interface,
* check to kick off any BGP interface-based neighbors,
* but only if this is a link-local address.
*/
if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
&& !list_isempty(ifc->ifp->nbr_connected))
bgp_start_interface_nbrs(bgp, ifc->ifp);
else {
addr = ifc->address;
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
if (addr->family == AF_INET)
continue;
/*
* If the Peer's interface name matches the
* interface name for which BGP received the
* update and if the received interface address
* is a globalV6 and if the peer is currently
* using a v4-mapped-v6 addr or a link local
* address, then copy the Rxed global v6 addr
* into peer's v6_global and send updates out
* with new nexthop addr.
*/
if ((peer->conf_if &&
(strcmp(peer->conf_if, ifc->ifp->name) ==
0)) &&
!IN6_IS_ADDR_LINKLOCAL(&addr->u.prefix6) &&
((IS_MAPPED_IPV6(
&peer->nexthop.v6_global)) ||
IN6_IS_ADDR_LINKLOCAL(
&peer->nexthop.v6_global))) {
if (bgp_debug_zebra(ifc->address)) {
zlog_debug(
"Update peer %pBP's current intf addr %pI6 and send updates",
peer,
&peer->nexthop
.v6_global);
}
memcpy(&peer->nexthop.v6_global,
&addr->u.prefix6,
IPV6_MAX_BYTELEN);
FOREACH_AFI_SAFI (afi, safi)
bgp_announce_route(peer, afi,
safi, true);
}
}
}
}
return 0;
}
static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
{
struct listnode *node, *nnode;
struct connected *ifc;
struct peer *peer;
struct bgp *bgp;
struct prefix *addr;
bgp = bgp_lookup_by_vrf_id(vrf_id);
ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address))
zlog_debug("Rx Intf address del VRF %s IF %s addr %pFX",
ifc->ifp->vrf->name, ifc->ifp->name, ifc->address);
if (bgp && if_is_operative(ifc->ifp)) {
bgp_connected_delete(bgp, ifc);
}
addr = ifc->address;
if (bgp) {
/*
* When we are using the v6 global as part of the peering
* nexthops and we are removing it, then we need to
* clear the peer data saved for that nexthop and
* cause a re-announcement of the route. Since
* we do not want the peering to bounce.
*/
for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
afi_t afi;
safi_t safi;
if (addr->family == AF_INET)
continue;
if (!IN6_IS_ADDR_LINKLOCAL(&addr->u.prefix6) &&
memcmp(&peer->nexthop.v6_global, &addr->u.prefix6, IPV6_MAX_BYTELEN) ==
0) {
memset(&peer->nexthop.v6_global, 0, IPV6_MAX_BYTELEN);
FOREACH_AFI_SAFI (afi, safi)
bgp_announce_route(peer, afi, safi,
true);
}
}
}
connected_free(&ifc);
return 0;
}
static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
{
struct nbr_connected *ifc = NULL;
struct bgp *bgp;
ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address))
zlog_debug("Rx Intf neighbor add VRF %s IF %s addr %pFX",
ifc->ifp->vrf->name, ifc->ifp->name, ifc->address);
if (if_is_operative(ifc->ifp)) {
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (bgp)
bgp_nbr_connected_add(bgp, ifc);
}
return 0;
}
static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
{
struct nbr_connected *ifc = NULL;
struct bgp *bgp;
ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
if (ifc == NULL)
return 0;
if (bgp_debug_zebra(ifc->address))
zlog_debug("Rx Intf neighbor del VRF %s IF %s addr %pFX",
ifc->ifp->vrf->name, ifc->ifp->name, ifc->address);
if (if_is_operative(ifc->ifp)) {
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (bgp)
bgp_nbr_connected_delete(bgp, ifc, 0);
}
nbr_connected_free(ifc);
return 0;
}
/* Zebra route add and delete treatment. */
static int zebra_read_route(ZAPI_CALLBACK_ARGS)
{
enum nexthop_types_t nhtype;
enum blackhole_type bhtype = BLACKHOLE_UNSPEC;
struct zapi_route api;
union g_addr nexthop = {};
ifindex_t ifindex;
int add, i;
struct bgp *bgp;
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (zapi_route_decode(zclient->ibuf, &api) < 0)
return -1;
/* we completely ignore srcdest routes for now. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
return 0;
/* ignore link-local address. */
if (api.prefix.family == AF_INET6
&& IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
return 0;
ifindex = api.nexthops[0].ifindex;
nhtype = api.nexthops[0].type;
/* api_nh structure has union of gate and bh_type */
if (nhtype == NEXTHOP_TYPE_BLACKHOLE) {
/* bh_type is only applicable if NEXTHOP_TYPE_BLACKHOLE*/
bhtype = api.nexthops[0].bh_type;
} else
nexthop = api.nexthops[0].gate;
add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
if (add) {
/*
* The ADD message is actually an UPDATE and there is no
* explicit DEL
* for a prior redistributed route, if any. So, perform an
* implicit
* DEL processing for the same redistributed route from any
* other
* source type.
*/
for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
if (i != api.type)
bgp_redistribute_delete(bgp, &api.prefix, i,
api.instance);
}
/* Now perform the add/update. */
bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
nhtype, api.distance, bhtype, api.metric,
api.type, api.instance, api.tag);
} else {
bgp_redistribute_delete(bgp, &api.prefix, api.type,
api.instance);
}
if (bgp_debug_zebra(&api.prefix)) {
char buf[PREFIX_STRLEN];
if (add) {
inet_ntop(api.prefix.family, &nexthop, buf,
sizeof(buf));
zlog_debug("Rx route ADD %s %s[%d] %pFX nexthop %s (type %d if %u) metric %u distance %u tag %" ROUTE_TAG_PRI,
bgp->name_pretty,
zebra_route_string(api.type), api.instance,
&api.prefix, buf, nhtype, ifindex,
api.metric, api.distance, api.tag);
} else {
zlog_debug("Rx route DEL %s %s[%d] %pFX",
bgp->name_pretty,
zebra_route_string(api.type), api.instance,
&api.prefix);
}
}
return 0;
}
struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
{
struct vrf *vrf;
struct interface *ifp;
struct connected *connected;
struct prefix_ipv4 p;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
p.family = AF_INET;
p.prefix = *addr;
p.prefixlen = IPV4_MAX_BITLEN;
FOR_ALL_INTERFACES (vrf, ifp) {
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET)
if (prefix_match(cp, (struct prefix *)&p))
return ifp;
}
}
return NULL;
}
struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
{
struct vrf *vrf;
struct interface *ifp;
struct connected *connected;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
FOR_ALL_INTERFACES (vrf, ifp) {
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET)
if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
return ifp;
}
}
return NULL;
}
struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
vrf_id_t vrf_id)
{
struct vrf *vrf;
struct interface *ifp;
struct connected *connected;
struct prefix_ipv6 p;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
p.family = AF_INET6;
p.prefix = *addr;
p.prefixlen = IPV6_MAX_BITLEN;
FOR_ALL_INTERFACES (vrf, ifp) {
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET6)
if (prefix_match(cp, (struct prefix *)&p)) {
if (IN6_IS_ADDR_LINKLOCAL(
&cp->u.prefix6)) {
if (ifindex == ifp->ifindex)
return ifp;
} else
return ifp;
}
}
}
return NULL;
}
struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
ifindex_t ifindex, vrf_id_t vrf_id)
{
struct vrf *vrf;
struct interface *ifp;
struct connected *connected;
struct prefix *cp;
vrf = vrf_lookup_by_id(vrf_id);
if (!vrf)
return NULL;
FOR_ALL_INTERFACES (vrf, ifp) {
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET6)
if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
if (IN6_IS_ADDR_LINKLOCAL(
&cp->u.prefix6)) {
if (ifindex == ifp->ifindex)
return ifp;
} else
return ifp;
}
}
}
return NULL;
}
static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
{
struct connected *connected;
struct prefix *cp;
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET6)
if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
return 1;
}
}
return 0;
}
static bool if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
{
struct connected *connected;
struct prefix *cp;
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if (cp->family == AF_INET6)
if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
return true;
}
}
return false;
}
static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
{
struct connected *connected;
struct prefix *cp;
frr_each (if_connected, ifp->connected, connected) {
cp = connected->address;
if ((cp->family == AF_INET)
&& !ipv4_martian(&(cp->u.prefix4))) {
*addr = cp->u.prefix4;
return 1;
}
}
return 0;
}
bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
struct bgp_nexthop *nexthop, struct peer *peer)
{
int ret = 0;
struct interface *ifp = NULL;
bool v6_ll_avail = true;
bool shared_network_original = peer->shared_network;
memset(nexthop, 0, sizeof(struct bgp_nexthop));
if (!local)
return false;
if (!remote)
return false;
if (local->sa.sa_family == AF_INET) {
nexthop->v4 = local->sin.sin_addr;
if (peer->update_if)
ifp = if_lookup_by_name(peer->update_if,
peer->bgp->vrf_id);
else
ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
peer->bgp->vrf_id);
}
if (local->sa.sa_family == AF_INET6) {
memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
if (peer->conf_if || peer->ifname)
ifp = if_lookup_by_name(peer->conf_if
? peer->conf_if
: peer->ifname,
peer->bgp->vrf_id);
else if (peer->update_if)
ifp = if_lookup_by_name(peer->update_if,
peer->bgp->vrf_id);
} else if (peer->update_if)
ifp = if_lookup_by_name(peer->update_if,
peer->bgp->vrf_id);
else
ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
local->sin6.sin6_scope_id,
peer->bgp->vrf_id);
}
/* Handle peerings via loopbacks. For instance, peer between
* 127.0.0.1 and 127.0.0.2. In short, allow peering with self
* via 127.0.0.0/8.
*/
if (!ifp && cmd_allow_reserved_ranges_get())
ifp = if_get_vrf_loopback(peer->bgp->vrf_id);
if (!ifp) {
/*
* BGP views do not currently get proper data
* from zebra( when attached ) to be able to
* properly resolve nexthops, so give this
* instance type a pass.
*/
if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
return true;
/*
* If we have no interface data but we have established
* some connection w/ zebra than something has gone
* terribly terribly wrong here, so say this failed
* If we do not any zebra connection then not
* having a ifp pointer is ok.
*/
return zclient_num_connects ? false : true;
}
nexthop->ifp = ifp;
/* IPv4 connection, fetch and store IPv6 local address(es) if any. */
if (local->sa.sa_family == AF_INET) {
/* IPv6 nexthop*/
ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
if (!ret) {
/* There is no global nexthop. Use link-local address as
* both the
* global and link-local nexthop. In this scenario, the
* expectation
* for interop is that the network admin would use a
* route-map to
* specify the global IPv6 nexthop.
*/
v6_ll_avail =
if_get_ipv6_local(ifp, &nexthop->v6_global);
memcpy(&nexthop->v6_local, &nexthop->v6_global,
IPV6_MAX_BYTELEN);
} else
v6_ll_avail =
if_get_ipv6_local(ifp, &nexthop->v6_local);
/*
* If we are a v4 connection and we are not doing unnumbered
* not having a v6 LL address is ok
*/
if (!v6_ll_avail && !peer->conf_if)
v6_ll_avail = true;
if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
peer->shared_network = true;
else
peer->shared_network = false;
}
/* IPv6 connection, fetch and store IPv4 local address if any. */
if (local->sa.sa_family == AF_INET6) {
struct interface *direct = NULL;
/* IPv4 nexthop. */
ret = if_get_ipv4_address(ifp, &nexthop->v4);
if (!ret && peer->local_id.s_addr != INADDR_ANY)
nexthop->v4 = peer->local_id;
/* Global address*/
if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
/* If directly connected set link-local address. */
direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
remote->sin6.sin6_scope_id,
peer->bgp->vrf_id);
if (direct)
v6_ll_avail = if_get_ipv6_local(
ifp, &nexthop->v6_local);
/*
* It's fine to not have a v6 LL when using
* update-source loopback/vrf
*/
if (!v6_ll_avail && if_is_loopback(ifp))
v6_ll_avail = true;
else if (!v6_ll_avail) {
flog_warn(
EC_BGP_NO_LL_ADDRESS_AVAILABLE,
"Interface: %s does not have a v6 LL address associated with it, waiting until one is created for it",
ifp->name);
}
} else
/* Link-local address. */
{
ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
/* If there is no global address. Set link-local
address as
global. I know this break RFC specification... */
/* In this scenario, the expectation for interop is that
* the
* network admin would use a route-map to specify the
* global
* IPv6 nexthop.
*/
if (!ret)
memcpy(&nexthop->v6_global,
&local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
/* Always set the link-local address */
memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
IPV6_MAX_BYTELEN);
}
if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
|| if_lookup_by_ipv6(&remote->sin6.sin6_addr,
remote->sin6.sin6_scope_id,
peer->bgp->vrf_id))
peer->shared_network = true;
else
peer->shared_network = false;
}
if (shared_network_original != peer->shared_network)
bgp_peer_bfd_update_source(peer);
/* KAME stack specific treatment. */
#ifdef KAME
if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
&& IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
}
if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
&& IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
}
#endif /* KAME */
/* If we have identified the local interface, there is no error for now.
*/
return v6_ll_avail;
}
static struct in6_addr *
bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
{
struct in6_addr *nexthop = NULL;
/* Only global address nexthop exists. */
if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
|| path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
nexthop = &path->attr->mp_nexthop_global;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_ifindex;
}
/* If both global and link-local address present. */
if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
|| path->attr->mp_nexthop_len
== BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
/* Check if route-map is set to prefer global over link-local */
if (CHECK_FLAG(path->attr->nh_flags,
BGP_ATTR_NH_MP_PREFER_GLOBAL)) {
nexthop = &path->attr->mp_nexthop_global;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_ifindex;
} else {
/* Workaround for Cisco's nexthop bug. */
if (IN6_IS_ADDR_UNSPECIFIED(&path->attr->mp_nexthop_global) &&
path->peer->connection->su_remote &&
path->peer->connection->su_remote->sa.sa_family == AF_INET6) {
nexthop = &path->peer->connection->su_remote->sin6.sin6_addr;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->peer->nexthop.ifp
->ifindex;
} else {
nexthop = &path->attr->mp_nexthop_local;
if (IN6_IS_ADDR_LINKLOCAL(nexthop))
*ifindex = path->attr->nh_lla_ifindex;
}
}
}
return nexthop;
}
static bool bgp_table_map_apply(struct route_map *map, const struct prefix *p,
struct bgp_path_info *path)
{
route_map_result_t ret;
ret = route_map_apply(map, p, path);
bgp_attr_flush(path->attr);
if (ret != RMAP_DENYMATCH)
return true;
if (bgp_debug_zebra(p)) {
if (p->family == AF_INET) {
zlog_debug(
"Zebra rmap deny: IPv4 route %pFX nexthop %pI4",
p, &path->attr->nexthop);
}
if (p->family == AF_INET6) {
ifindex_t ifindex;
struct in6_addr *nexthop;
nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
zlog_debug(
"Zebra rmap deny: IPv6 route %pFX nexthop %pI6",
p, nexthop);
}
}
return false;
}
static struct event *bgp_tm_thread_connect;
static bool bgp_tm_status_connected;
static bool bgp_tm_chunk_obtained;
#define BGP_FLOWSPEC_TABLE_CHUNK 100000
static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
struct bgp *bgp_tm_bgp;
static void bgp_zebra_tm_connect(struct event *t)
{
struct zclient *zclient;
int delay = 10, ret = 0;
zclient = EVENT_ARG(t);
if (bgp_tm_status_connected && zclient->sock > 0)
delay = 60;
else {
bgp_tm_status_connected = false;
ret = tm_table_manager_connect(zclient);
}
if (ret < 0) {
zlog_err("Error connecting to table manager!");
bgp_tm_status_connected = false;
} else {
if (!bgp_tm_status_connected) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"Connecting to table manager. Success");
}
bgp_tm_status_connected = true;
if (!bgp_tm_chunk_obtained) {
if (bgp_zebra_get_table_range(zclient, bgp_tm_chunk_size,
&bgp_tm_min,
&bgp_tm_max) >= 0) {
bgp_tm_chunk_obtained = true;
/* parse non installed entries */
bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
}
}
}
event_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
&bgp_tm_thread_connect);
}
bool bgp_zebra_tm_chunk_obtained(void)
{
return bgp_tm_chunk_obtained;
}
uint32_t bgp_zebra_tm_get_id(void)
{
static int table_id;
if (!bgp_tm_chunk_obtained)
return ++table_id;
return bgp_tm_min++;
}
void bgp_zebra_init_tm_connect(struct bgp *bgp)
{
int delay = 1;
/* if already set, do nothing
*/
if (bgp_tm_thread_connect != NULL)
return;
bgp_tm_status_connected = false;
bgp_tm_chunk_obtained = false;
bgp_tm_min = bgp_tm_max = 0;
bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
bgp_tm_bgp = bgp;
event_add_timer(bm->master, bgp_zebra_tm_connect, zclient_sync, delay,
&bgp_tm_thread_connect);
}
int bgp_zebra_get_table_range(struct zclient *zc, uint32_t chunk_size,
uint32_t *start, uint32_t *end)
{
int ret;
if (!bgp_tm_status_connected)
return -1;
ret = tm_get_table_chunk(zc, chunk_size, start, end);
if (ret < 0) {
flog_err(EC_BGP_TABLE_CHUNK,
"BGP: Error getting table chunk %u", chunk_size);
return -1;
}
zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
chunk_size, *start, *end);
return 0;
}
static bool update_ipv4nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
struct in_addr *nexthop,
struct attr *attr, bool is_evpn,
struct zapi_nexthop *api_nh)
{
struct bgp_route_evpn *bre = bgp_attr_get_evpn_overlay(attr);
api_nh->gate.ipv4 = *nexthop;
api_nh->vrf_id = nh_bgp->vrf_id;
/* Need to set fields appropriately for EVPN routes imported into
* a VRF (which are programmed as onlink on l3-vni SVI) as well as
* connected routes leaked into a VRF.
*/
if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
api_nh->type = attr->nh_type;
api_nh->bh_type = attr->bh_type;
} else if (is_evpn) {
/*
* If the nexthop is EVPN overlay index gateway IP,
* treat the nexthop as NEXTHOP_TYPE_IPV4
* Else, mark the nexthop as onlink.
*/
if (bre && bre->type == OVERLAY_INDEX_GATEWAY_IP)
api_nh->type = NEXTHOP_TYPE_IPV4;
else {
api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN);
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
}
} else if (nh_othervrf && api_nh->gate.ipv4.s_addr == INADDR_ANY) {
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = attr->nh_ifindex;
} else
api_nh->type = NEXTHOP_TYPE_IPV4;
return true;
}
static bool update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
struct in6_addr *nexthop,
ifindex_t ifindex,
struct bgp_path_info *pi,
struct bgp_path_info *best_pi,
bool is_evpn,
struct zapi_nexthop *api_nh)
{
struct attr *attr;
struct bgp_route_evpn *bre;
attr = pi->attr;
api_nh->vrf_id = nh_bgp->vrf_id;
bre = bgp_attr_get_evpn_overlay(attr);
if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
api_nh->type = attr->nh_type;
api_nh->bh_type = attr->bh_type;
} else if (is_evpn) {
/*
* If the nexthop is EVPN overlay index gateway IP,
* treat the nexthop as NEXTHOP_TYPE_IPV4
* Else, mark the nexthop as onlink.
*/
if (bre && bre->type == OVERLAY_INDEX_GATEWAY_IP)
api_nh->type = NEXTHOP_TYPE_IPV6;
else {
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN);
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
}
} else if (nh_othervrf) {
if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = attr->nh_ifindex;
} else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
if (ifindex == 0)
return false;
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
api_nh->ifindex = ifindex;
} else {
api_nh->type = NEXTHOP_TYPE_IPV6;
api_nh->ifindex = 0;
}
} else {
if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
if (pi == best_pi
&& attr->mp_nexthop_len
== BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
if (pi->peer->nexthop.ifp)
ifindex =
pi->peer->nexthop.ifp->ifindex;
if (!ifindex) {
if (pi->peer->conf_if) {
if (pi->peer->ifp)
ifindex = pi->peer->ifp->ifindex;
} else if (pi->peer->ifname)
ifindex = ifname2ifindex(
pi->peer->ifname,
pi->peer->bgp->vrf_id);
else if (pi->peer->nexthop.ifp)
ifindex =
pi->peer->nexthop.ifp->ifindex;
}
if (ifindex == 0)
return false;
api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
api_nh->ifindex = ifindex;
} else {
api_nh->type = NEXTHOP_TYPE_IPV6;
api_nh->ifindex = 0;
}
}
/* api_nh structure has union of gate and bh_type */
if (nexthop && api_nh->type != NEXTHOP_TYPE_BLACKHOLE)
api_nh->gate.ipv6 = *nexthop;
return true;
}
static bool bgp_zebra_use_nhop_weighted(struct bgp *bgp, struct attr *attr,
uint64_t *nh_weight)
{
/* zero link-bandwidth and link-bandwidth not present are treated
* as the same situation.
*/
if (!attr->link_bw) {
/* the only situations should be if we're either told
* to skip or use default weight.
*/
if (bgp->lb_handling == BGP_LINK_BW_SKIP_MISSING)
return false;
*nh_weight = BGP_ZEBRA_DEFAULT_NHOP_WEIGHT;
} else
*nh_weight = attr->link_bw;
return true;
}
static void bgp_zebra_announce_parse_nexthop(
struct bgp_path_info *info, const struct prefix *p, struct bgp *bgp,
struct zapi_route *api, unsigned int *valid_nh_count, afi_t afi,
safi_t safi, uint32_t *nhg_id, uint32_t *metric, route_tag_t *tag,
bool *allow_recursion)
{
struct zapi_nexthop *api_nh;
int nh_family;
struct bgp_path_info *mpinfo;
struct bgp *bgp_orig;
struct attr local_attr;
struct bgp_path_info local_info;
struct bgp_path_info *mpinfo_cp = &local_info;
mpls_label_t *labels;
uint8_t num_labels = 0;
mpls_label_t nh_label;
int nh_othervrf = 0;
bool nh_updated = false;
bool do_wt_ecmp;
uint32_t ttl = 0;
uint32_t bos = 0;
uint32_t exp = 0;
struct bgp_route_evpn *bre = NULL;
/* Determine if we're doing weighted ECMP or not */
do_wt_ecmp = bgp_path_info_mpath_chkwtd(bgp, info);
/*
* vrf leaking support (will have only one nexthop)
*/
if (info->extra && info->extra->vrfleak &&
info->extra->vrfleak->bgp_orig)
nh_othervrf = 1;
/* EVPN MAC-IP routes are installed with a L3 NHG id */
if (nhg_id && bgp_evpn_path_es_use_nhg(bgp, info, nhg_id)) {
mpinfo = NULL;
zapi_route_set_nhg_id(api, nhg_id);
} else {
mpinfo = info;
}
for (; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
uint64_t nh_weight;
bool is_evpn;
bool is_parent_evpn;
if (*valid_nh_count >= multipath_num)
break;
*mpinfo_cp = *mpinfo;
nh_weight = 0;
/* Get nexthop address-family */
if (p->family == AF_INET &&
!BGP_ATTR_MP_NEXTHOP_LEN_IP6(mpinfo_cp->attr))
nh_family = AF_INET;
else if (p->family == AF_INET6 ||
(p->family == AF_INET &&
BGP_ATTR_MP_NEXTHOP_LEN_IP6(mpinfo_cp->attr)))
nh_family = AF_INET6;
else
continue;
/* If processing for weighted ECMP, determine the next hop's
* weight. Based on user setting, we may skip the next hop
* in some situations.
*/
if (do_wt_ecmp) {
if (!bgp_zebra_use_nhop_weighted(bgp, mpinfo->attr,
&nh_weight))
continue;
}
api_nh = &api->nexthops[*valid_nh_count];
api_nh->srte_color = bgp_attr_get_color(info->attr);
if (bgp_debug_zebra(&api->prefix)) {
if (BGP_PATH_INFO_NUM_LABELS(mpinfo)) {
zlog_debug("%s: p=%pFX, bgp_is_valid_label: %d",
__func__, p,
bgp_is_valid_label(
&mpinfo->extra->labels
->label[0]));
} else {
zlog_debug("%s: p=%pFX, no label", __func__, p);
}
}
if (bgp->table_map[afi][safi].name) {
/* Copy info and attributes, so the route-map
apply doesn't modify the BGP route info. */
local_attr = *mpinfo->attr;
mpinfo_cp->attr = &local_attr;
if (!bgp_table_map_apply(bgp->table_map[afi][safi].map,
p, mpinfo_cp))
continue;
/* metric/tag is only allowed to be
* overridden on 1st nexthop */
if (mpinfo == info) {
if (metric)
*metric = bgp_med_value(mpinfo_cp->attr, bgp);
if (tag)
*tag = mpinfo_cp->attr->tag;
}
}
BGP_ORIGINAL_UPDATE(bgp_orig, mpinfo, bgp);
is_parent_evpn = is_route_parent_evpn(mpinfo);
if (nh_family == AF_INET) {
nh_updated = update_ipv4nh_for_route_install(
nh_othervrf, bgp_orig,
&mpinfo_cp->attr->nexthop, mpinfo_cp->attr,
is_parent_evpn, api_nh);
} else {
ifindex_t ifindex = IFINDEX_INTERNAL;
struct in6_addr *nexthop;
nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
&ifindex);
if (!nexthop)
nh_updated = update_ipv4nh_for_route_install(
nh_othervrf, bgp_orig,
&mpinfo_cp->attr->nexthop,
mpinfo_cp->attr, is_parent_evpn,
api_nh);
else
nh_updated = update_ipv6nh_for_route_install(
nh_othervrf, bgp_orig, nexthop, ifindex,
mpinfo, info, is_parent_evpn, api_nh);
}
is_evpn = !!CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN);
bre = bgp_attr_get_evpn_overlay(mpinfo->attr);
/* Did we get proper nexthop info to update zebra? */
if (!nh_updated)
continue;
/* Allow recursion if it is a multipath group with both
* eBGP and iBGP paths.
*/
if (allow_recursion && !*allow_recursion &&
CHECK_FLAG(bgp->flags, BGP_FLAG_PEERTYPE_MULTIPATH_RELAX) &&
(mpinfo->peer->sort == BGP_PEER_IBGP ||
mpinfo->peer->sort == BGP_PEER_CONFED))
*allow_recursion = true;
num_labels = BGP_PATH_INFO_NUM_LABELS(mpinfo);
labels = num_labels ? mpinfo->extra->labels->label : NULL;
if (num_labels && (is_evpn || bgp_is_valid_label(&labels[0]))) {
enum lsp_types_t nh_label_type = ZEBRA_LSP_NONE;
if (is_evpn) {
nh_label = *bgp_evpn_path_info_labels_get_l3vni(
labels, num_labels);
nh_label_type = ZEBRA_LSP_EVPN;
} else {
mpls_lse_decode(labels[0], &nh_label, &ttl,
&exp, &bos);
}
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
api_nh->label_num = 1;
api_nh->label_type = nh_label_type;
api_nh->labels[0] = nh_label;
}
if (is_evpn && !(bre && bre->type == OVERLAY_INDEX_GATEWAY_IP))
memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
sizeof(struct ethaddr));
api_nh->weight = nh_weight;
if (((mpinfo->attr->srv6_l3vpn &&
!sid_zero_ipv6(&mpinfo->attr->srv6_l3vpn->sid)) ||
(mpinfo->attr->srv6_vpn &&
!sid_zero_ipv6(&mpinfo->attr->srv6_vpn->sid))) &&
!is_evpn && bgp_is_valid_label(&labels[0])) {
struct in6_addr *sid_tmp =
mpinfo->attr->srv6_l3vpn
? (&mpinfo->attr->srv6_l3vpn->sid)
: (&mpinfo->attr->srv6_vpn->sid);
memcpy(&api_nh->seg6_segs[0], sid_tmp,
sizeof(api_nh->seg6_segs[0]));
if (mpinfo->attr->srv6_l3vpn &&
mpinfo->attr->srv6_l3vpn->transposition_len != 0) {
mpls_lse_decode(labels[0], &nh_label, &ttl,
&exp, &bos);
if (nh_label < MPLS_LABEL_UNRESERVED_MIN) {
if (bgp_debug_zebra(&api->prefix))
zlog_debug(
"skip invalid SRv6 routes: transposition scheme is used, but label is too small");
continue;
}
transpose_sid(&api_nh->seg6_segs[0], nh_label,
mpinfo->attr->srv6_l3vpn
->transposition_offset,
mpinfo->attr->srv6_l3vpn
->transposition_len);
}
api_nh->seg_num = 1;
SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6);
}
(*valid_nh_count)++;
}
}
static void bgp_debug_zebra_nh(struct zapi_route *api)
{
int i;
int nh_family;
char nh_buf[INET6_ADDRSTRLEN];
char eth_buf[ETHER_ADDR_STRLEN + 7] = { '\0' };
char buf1[ETHER_ADDR_STRLEN];
char label_buf[20];
char sid_buf[20];
char segs_buf[256];
struct zapi_nexthop *api_nh;
int count;
count = api->nexthop_num;
for (i = 0; i < count; i++) {
api_nh = &api->nexthops[i];
switch (api_nh->type) {
case NEXTHOP_TYPE_IFINDEX:
nh_buf[0] = '\0';
break;
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
nh_family = AF_INET;
inet_ntop(nh_family, &api_nh->gate, nh_buf,
sizeof(nh_buf));
break;
case NEXTHOP_TYPE_IPV6:
case NEXTHOP_TYPE_IPV6_IFINDEX:
nh_family = AF_INET6;
inet_ntop(nh_family, &api_nh->gate, nh_buf,
sizeof(nh_buf));
break;
case NEXTHOP_TYPE_BLACKHOLE:
strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
break;
default:
/* Note: add new nexthop case */
assert(0);
break;
}
label_buf[0] = '\0';
eth_buf[0] = '\0';
segs_buf[0] = '\0';
if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL) &&
!CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN))
snprintf(label_buf, sizeof(label_buf), "label %u",
api_nh->labels[0]);
if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6) &&
!CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN)) {
inet_ntop(AF_INET6, &api_nh->seg6_segs[0], sid_buf,
sizeof(sid_buf));
snprintf(segs_buf, sizeof(segs_buf), "segs %s", sid_buf);
}
if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_EVPN) &&
!is_zero_mac(&api_nh->rmac))
snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
prefix_mac2str(&api_nh->rmac, buf1,
sizeof(buf1)));
zlog_debug(" nhop [%d]: %s if %u VRF %u wt %" PRIu64
" %s %s %s",
i + 1, nh_buf, api_nh->ifindex, api_nh->vrf_id,
api_nh->weight, label_buf, segs_buf, eth_buf);
}
}
static enum zclient_send_status
bgp_zebra_announce_actual(struct bgp_dest *dest, struct bgp_path_info *info,
struct bgp *bgp)
{
struct bgp_path_info *bpi_ultimate;
struct zapi_route api = { 0 };
unsigned int valid_nh_count = 0;
bool allow_recursion = false;
uint8_t distance;
struct peer *peer;
uint32_t metric;
route_tag_t tag;
uint32_t nhg_id = 0;
struct bgp_table *table = bgp_dest_table(dest);
const struct prefix *p = bgp_dest_get_prefix(dest);
if (table->safi == SAFI_FLOWSPEC) {
bgp_pbr_update_entry(bgp, p, info, table->afi, table->safi,
true);
return ZCLIENT_SEND_SUCCESS;
}
/* Make Zebra API structure. */
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = table->safi;
api.prefix = *p;
SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
peer = info->peer;
if (info->type == ZEBRA_ROUTE_BGP) {
bpi_ultimate = bgp_get_imported_bpi_ultimate(info);
peer = bpi_ultimate->peer;
}
tag = info->attr->tag;
if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
|| info->sub_type == BGP_ROUTE_AGGREGATE) {
SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
}
if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
|| CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
|| CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
allow_recursion = true;
if (info->attr->rmap_table_id) {
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
api.tableid = info->attr->rmap_table_id;
}
if (info->attr->srte_color)
SET_FLAG(api.message, ZAPI_MESSAGE_SRTE);
/* Metric is currently based on the best-path only */
metric = info->attr->med;
bgp_zebra_announce_parse_nexthop(info, p, bgp, &api, &valid_nh_count,
table->afi, table->safi, &nhg_id,
&metric, &tag, &allow_recursion);
if (CHECK_FLAG(bm->flags, BM_FLAG_SEND_EXTRA_DATA_TO_ZEBRA)) {
struct bgp_zebra_opaque bzo = {};
const char *reason =
bgp_path_selection_reason2str(dest->reason);
strlcpy(bzo.aspath, info->attr->aspath->str,
sizeof(bzo.aspath));
if (info->attr->flag & ATTR_FLAG_BIT(BGP_ATTR_COMMUNITIES))
strlcpy(bzo.community,
bgp_attr_get_community(info->attr)->str,
sizeof(bzo.community));
if (info->attr->flag
& ATTR_FLAG_BIT(BGP_ATTR_LARGE_COMMUNITIES))
strlcpy(bzo.lcommunity,
bgp_attr_get_lcommunity(info->attr)->str,
sizeof(bzo.lcommunity));
strlcpy(bzo.selection_reason, reason,
sizeof(bzo.selection_reason));
SET_FLAG(api.message, ZAPI_MESSAGE_OPAQUE);
api.opaque.length = MIN(sizeof(struct bgp_zebra_opaque),
ZAPI_MESSAGE_OPAQUE_LENGTH);
memcpy(api.opaque.data, &bzo, api.opaque.length);
}
if (allow_recursion)
SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
/*
* When we create an aggregate route we must also
* install a Null0 route in the RIB, so overwrite
* what was written into api with a blackhole route
*/
if (info->sub_type == BGP_ROUTE_AGGREGATE)
zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
else
api.nexthop_num = valid_nh_count;
SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
api.metric = metric;
if (tag) {
SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
api.tag = tag;
}
distance = bgp_distance_apply(p, info, table->afi, table->safi, bgp);
if (distance) {
SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
api.distance = distance;
}
if (bgp_debug_zebra(p)) {
zlog_debug("Tx route add %s (table id %u) %pFX metric %u tag %" ROUTE_TAG_PRI
" count %d nhg %d",
bgp->name_pretty, api.tableid, &api.prefix,
api.metric, api.tag, api.nexthop_num, nhg_id);
bgp_debug_zebra_nh(&api);
zlog_debug("%s: %pFX: announcing to zebra (recursion %sset)",
__func__, p, (allow_recursion ? "" : "NOT "));
}
return zclient_route_send(ZEBRA_ROUTE_ADD, zclient, &api);
}
/* Announce all routes of a table to zebra */
void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
{
struct bgp_dest *dest;
struct bgp_table *table;
struct bgp_path_info *pi;
/* Don't try to install if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return;
table = bgp->rib[afi][safi];
if (!table)
return;
for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
(pi->type == ZEBRA_ROUTE_BGP && (pi->sub_type == BGP_ROUTE_NORMAL ||
pi->sub_type == BGP_ROUTE_IMPORTED))) {
bool is_add = true;
if (bgp->table_map[afi][safi].name) {
struct attr local_attr = *pi->attr;
struct bgp_path_info local_info = *pi;
local_info.attr = &local_attr;
is_add = bgp_table_map_apply(bgp->table_map[afi][safi].map,
bgp_dest_get_prefix(dest),
&local_info);
}
bgp_zebra_route_install(dest, pi, bgp, is_add, NULL, false);
}
}
/* Announce routes of any bgp subtype of a table to zebra */
void bgp_zebra_announce_table_all_subtypes(struct bgp *bgp, afi_t afi,
safi_t safi)
{
struct bgp_dest *dest;
struct bgp_table *table;
struct bgp_path_info *pi;
if (!bgp_install_info_to_zebra(bgp))
return;
table = bgp->rib[afi][safi];
if (!table)
return;
for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
pi->type == ZEBRA_ROUTE_BGP)
bgp_zebra_route_install(dest, pi, bgp, true,
NULL, false);
}
enum zclient_send_status bgp_zebra_withdraw_actual(struct bgp_dest *dest,
struct bgp_path_info *info,
struct bgp *bgp)
{
struct zapi_route api;
struct peer *peer;
struct bgp_table *table = bgp_dest_table(dest);
const struct prefix *p = bgp_dest_get_prefix(dest);
if (table->safi == SAFI_FLOWSPEC) {
peer = info->peer;
bgp_pbr_update_entry(peer->bgp, p, info, table->afi,
table->safi, false);
return ZCLIENT_SEND_SUCCESS;
}
memset(&api, 0, sizeof(api));
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = table->safi;
api.prefix = *p;
if (info->attr->rmap_table_id) {
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
api.tableid = info->attr->rmap_table_id;
}
if (bgp_debug_zebra(p))
zlog_debug("Tx route delete %s (table id %u) %pFX",
bgp->name_pretty, api.tableid, &api.prefix);
return zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
}
/*
* Walk the new Fifo list one by one and invoke bgp_zebra_announce/withdraw
* to install/withdraw the routes to zebra.
*
* If status = ZCLIENT_SEND_SUCCESS (Buffer empt)y i.e. Zebra is free to
* receive more incoming data, then pick the next item on the list and
* continue processing.
*
* If status = ZCLIENT_SEND_BUFFERED (Buffer pending) i.e. Zebra is busy,
* break and bail out of the function because once at some point when zebra
* is free, a callback is triggered which inturn call this same function and
* continue processing items on list.
*/
#define ZEBRA_ANNOUNCEMENTS_LIMIT 1000
static void bgp_handle_route_announcements_to_zebra(struct event *e)
{
bool is_evpn = false;
uint32_t count = 0;
struct bgp_dest *dest = NULL;
struct bgp_table *table = NULL;
enum zclient_send_status status = ZCLIENT_SEND_SUCCESS;
bool install;
const struct prefix_evpn *evp = NULL;
while (count < ZEBRA_ANNOUNCEMENTS_LIMIT) {
is_evpn = false;
dest = zebra_announce_pop(&bm->zebra_announce_head);
if (!dest)
break;
table = bgp_dest_table(dest);
install = CHECK_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL);
if (table->afi == AFI_L2VPN && table->safi == SAFI_EVPN) {
is_evpn = true;
evp = (const struct prefix_evpn *)bgp_dest_get_prefix(
dest);
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("BGP %s%s route %pBD(%s) with dest %p and flags 0x%x to zebra",
install ? "announcing" : "withdrawing",
is_evpn ? " evpn" : " ", dest,
table->bgp->name_pretty, dest, dest->flags);
if (install) {
if (is_evpn)
status =
evpn_zebra_install(table->bgp,
dest->za_vpn,
(const struct prefix_evpn
*)
bgp_dest_get_prefix(
dest),
dest->za_bgp_pi);
else
status = bgp_zebra_announce_actual(dest,
dest->za_bgp_pi,
table->bgp);
UNSET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL);
} else {
if (is_evpn)
status = evpn_zebra_uninstall(
table->bgp, dest->za_vpn,
(const struct prefix_evpn *)
bgp_dest_get_prefix(dest),
dest->za_bgp_pi, false);
else
status = bgp_zebra_withdraw_actual(dest,
dest->za_bgp_pi,
table->bgp);
UNSET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_DELETE);
}
if (is_evpn && status == ZCLIENT_SEND_FAILURE)
flog_err(EC_BGP_EVPN_FAIL,
"%s (%u): Failed to %s EVPN %pFX %s route in VNI %u",
vrf_id_to_name(table->bgp->vrf_id),
table->bgp->vrf_id,
install ? "install" : "uninstall", evp,
evp->prefix.route_type == BGP_EVPN_MAC_IP_ROUTE
? "MACIP"
: "IMET",
dest->za_vpn->vni);
bgp_path_info_unlock(dest->za_bgp_pi);
dest->za_bgp_pi = NULL;
dest->za_vpn = NULL;
bgp_dest_unlock_node(dest);
if (status == ZCLIENT_SEND_BUFFERED)
break;
count++;
}
if (status != ZCLIENT_SEND_BUFFERED &&
zebra_announce_count(&bm->zebra_announce_head))
event_add_event(bm->master,
bgp_handle_route_announcements_to_zebra, NULL,
0, &bm->t_bgp_zebra_route);
}
/*
* Callback function invoked when zclient_flush_data() receives a BUFFER_EMPTY
* i.e. zebra is free to receive more incoming data.
*/
static void bgp_zebra_buffer_write_ready(void)
{
bgp_handle_route_announcements_to_zebra(NULL);
}
/*
* BGP is now keeping a list of dests with the dest having a pointer
* to the bgp_path_info that it will be working on.
* Here is the sequence of events that should happen:
*
* Current State New State Action
* ------------- --------- ------
* ---- Install Place dest on list, save pi, mark
* as going to be installed
* ---- Withdrawal Place dest on list, save pi, mark
* as going to be deleted
*
* Install Install Leave dest on list, release old pi,
* save new pi, mark as going to be
* Installed
* Install Withdrawal Leave dest on list, release old pi,
* save new pi, mark as going to be
* withdrawan, remove install flag
*
* Withdrawal Install Leave dest on list, release old pi,
* save new pi, mark as going to be
* installed.
* Withdrawal Withdrawal Leave dest on list, release old pi,
* save new pi, mark as going to be
* withdrawn.
*/
void bgp_zebra_route_install(struct bgp_dest *dest, struct bgp_path_info *info,
struct bgp *bgp, bool install, struct bgpevpn *vpn,
bool is_sync)
{
bool is_evpn = false;
struct bgp_table *table = NULL;
table = bgp_dest_table(dest);
if (table && table->afi == AFI_L2VPN && table->safi == SAFI_EVPN)
is_evpn = true;
/*
* BGP is installing this route and bgp has been configured
* to suppress announcements until the route has been installed
* let's set the fact that we expect this route to be installed
*/
if (install) {
if (BGP_SUPPRESS_FIB_ENABLED(bgp))
SET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
if (bgp->main_zebra_update_hold && !is_evpn)
return;
} else {
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
}
/*
* Don't try to install if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp) && !is_evpn)
return;
if (!CHECK_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL) &&
!CHECK_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_DELETE)) {
zebra_announce_add_tail(&bm->zebra_announce_head, dest);
/*
* If neither flag is set and za_bgp_pi is not set then it is a bug
*/
assert(!dest->za_bgp_pi);
bgp_path_info_lock(info);
bgp_dest_lock_node(dest);
dest->za_bgp_pi = info;
} else if (CHECK_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL)) {
assert(dest->za_bgp_pi);
bgp_path_info_unlock(dest->za_bgp_pi);
bgp_path_info_lock(info);
dest->za_bgp_pi = info;
} else if (CHECK_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_DELETE)) {
assert(dest->za_bgp_pi);
bgp_path_info_unlock(dest->za_bgp_pi);
bgp_path_info_lock(info);
dest->za_bgp_pi = info;
}
if (is_evpn) {
dest->za_vpn = vpn;
dest->za_is_sync = is_sync;
}
if (install) {
UNSET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_DELETE);
SET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL);
} else {
UNSET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_INSTALL);
SET_FLAG(dest->flags, BGP_NODE_SCHEDULE_FOR_DELETE);
}
event_add_event(bm->master, bgp_handle_route_announcements_to_zebra,
NULL, 0, &bm->t_bgp_zebra_route);
}
/* Withdraw all entries in a BGP instances RIB table from Zebra */
void bgp_zebra_withdraw_table_all_subtypes(struct bgp *bgp, afi_t afi, safi_t safi)
{
struct bgp_dest *dest;
struct bgp_table *table;
struct bgp_path_info *pi;
if (!bgp_install_info_to_zebra(bgp))
return;
table = bgp->rib[afi][safi];
if (!table)
return;
for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest)) {
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED)
&& (pi->type == ZEBRA_ROUTE_BGP))
bgp_zebra_route_install(dest, pi, bgp, false,
NULL, false);
}
}
}
struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
{
struct list *red_list;
struct listnode *node;
struct bgp_redist *red;
red_list = bgp->redist[afi][type];
if (!red_list)
return (NULL);
for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
if (red->instance == instance)
return red;
return NULL;
}
struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
{
struct list *red_list;
struct bgp_redist *red;
red = bgp_redist_lookup(bgp, afi, type, instance);
if (red)
return red;
if (!bgp->redist[afi][type])
bgp->redist[afi][type] = list_new();
red_list = bgp->redist[afi][type];
red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
red->instance = instance;
listnode_add(red_list, red);
return red;
}
static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
unsigned short instance)
{
struct bgp_redist *red;
red = bgp_redist_lookup(bgp, afi, type, instance);
if (red) {
listnode_delete(bgp->redist[afi][type], red);
XFREE(MTYPE_BGP_REDIST, red);
if (!bgp->redist[afi][type]->count)
list_delete(&bgp->redist[afi][type]);
}
}
/* Other routes redistribution into BGP. */
int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
unsigned short instance, bool changed)
{
/* If redistribute options are changed call
* bgp_redistribute_unreg() to reset the option and withdraw
* the routes
*/
if (changed)
bgp_redistribute_unreg(bgp, afi, type, instance);
/* Return if already redistribute flag is set. */
if (instance) {
if (type == ZEBRA_ROUTE_TABLE_DIRECT) {
/*
* When redistribution type is `table-direct` the
* instance means `table identification`.
*
* `table_id` support 32bit integers, however since
* `instance` is being overloaded to `table_id` it
* will only be possible to use the first 65535
* entries.
*
* Also the ZAPI must also support `int`
* (see `zebra_redistribute_add`).
*/
struct redist_table_direct table = {
.table_id = instance,
.vrf_id = bgp->vrf_id,
};
if (redist_lookup_table_direct(&zclient->mi_redist[afi][type], &table) !=
NULL)
return CMD_WARNING;
redist_add_table_direct(&zclient->mi_redist[afi][type], &table);
} else {
if (redist_check_instance(&zclient->mi_redist[afi][type], instance))
return CMD_WARNING;
redist_add_instance(&zclient->mi_redist[afi][type], instance);
}
} else {
if (vrf_bitmap_check(&zclient->redist[afi][type], bgp->vrf_id))
return CMD_WARNING;
#ifdef ENABLE_BGP_VNC
if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
vnc_export_bgp_enable(
bgp, afi); /* only enables if mode bits cfg'd */
}
#endif
vrf_bitmap_set(&zclient->redist[afi][type], bgp->vrf_id);
}
/*
* Don't try to register if we're not connected to Zebra or Zebra
* doesn't know of this instance.
*
* When we come up later well resend if needed.
*/
if (!bgp_install_info_to_zebra(bgp))
return CMD_SUCCESS;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute add %s afi %d %s %d",
bgp->name_pretty, afi, zebra_route_string(type),
instance);
/* Send distribute add message to zebra. */
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
instance, bgp->vrf_id);
return CMD_SUCCESS;
}
int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
/* Don't try to send if we're not connected to Zebra or Zebra doesn't
* know of this instance.
*/
if (!bgp_install_info_to_zebra(bgp))
return -1;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute del/add %s afi %d %s %d",
bgp->name_pretty, afi, zebra_route_string(type),
instance);
/* Send distribute add message to zebra. */
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
instance, bgp->vrf_id);
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
instance, bgp->vrf_id);
return 0;
}
/* Redistribute with route-map specification. */
bool bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
struct route_map *route_map)
{
if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
return false;
XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
/* Decrement the count for existing routemap and
* increment the count for new route map.
*/
route_map_counter_decrement(red->rmap.map);
red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
red->rmap.map = route_map;
route_map_counter_increment(red->rmap.map);
return true;
}
/* Redistribute with metric specification. */
bool bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
afi_t afi, int type, uint32_t metric)
{
struct bgp_dest *dest;
struct bgp_path_info *pi;
if (red->redist_metric_flag && red->redist_metric == metric)
return false;
red->redist_metric_flag = 1;
red->redist_metric = metric;
for (dest = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); dest;
dest = bgp_route_next(dest)) {
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
&& pi->type == type
&& pi->instance == red->instance) {
struct attr *old_attr;
struct attr new_attr;
new_attr = *pi->attr;
new_attr.med = red->redist_metric;
old_attr = pi->attr;
pi->attr = bgp_attr_intern(&new_attr);
bgp_attr_unintern(&old_attr);
bgp_path_info_set_flag(dest, pi,
BGP_PATH_ATTR_CHANGED);
bgp_process(bgp, dest, pi, afi, SAFI_UNICAST);
}
}
}
return true;
}
/* Unset redistribution. */
int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
struct bgp_redist *red;
red = bgp_redist_lookup(bgp, afi, type, instance);
if (!red)
return CMD_SUCCESS;
/* Return if zebra connection is disabled. */
if (instance) {
if (type == ZEBRA_ROUTE_TABLE_DIRECT) {
struct redist_table_direct table = {
.table_id = instance,
.vrf_id = bgp->vrf_id,
};
if (redist_lookup_table_direct(&zclient->mi_redist[afi][type], &table) ==
NULL)
return CMD_WARNING;
redist_del_table_direct(&zclient->mi_redist[afi][type], &table);
} else {
if (!redist_check_instance(&zclient->mi_redist[afi][type], instance))
return CMD_WARNING;
redist_del_instance(&zclient->mi_redist[afi][type], instance);
}
} else {
if (!vrf_bitmap_check(&zclient->redist[afi][type], bgp->vrf_id))
return CMD_WARNING;
vrf_bitmap_unset(&zclient->redist[afi][type], bgp->vrf_id);
}
if (bgp_install_info_to_zebra(bgp)) {
/* Send distribute delete message to zebra. */
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Tx redistribute del %s afi %d %s %d",
bgp->name_pretty, afi,
zebra_route_string(type), instance);
zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
type, instance, bgp->vrf_id);
}
/* Withdraw redistributed routes from current BGP's routing table. */
bgp_redistribute_withdraw(bgp, afi, type, instance);
return CMD_SUCCESS;
}
/* Unset redistribution. */
static void _bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
struct bgp_redist *red;
/*
* vnc and vpn->vrf checks must be before red check because
* they operate within bgpd irrespective of zebra connection
* status. red lookup fails if there is no zebra connection.
*/
#ifdef ENABLE_BGP_VNC
if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
vnc_export_bgp_disable(bgp, afi);
}
#endif
red = bgp_redist_lookup(bgp, afi, type, instance);
if (!red)
return;
bgp_redistribute_unreg(bgp, afi, type, instance);
/* Unset route-map. */
XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
route_map_counter_decrement(red->rmap.map);
red->rmap.map = NULL;
/* Unset metric. */
red->redist_metric_flag = 0;
red->redist_metric = 0;
bgp_redist_del(bgp, afi, type, instance);
}
void bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
unsigned short instance)
{
struct listnode *node, *nnode;
struct bgp_redist *red;
if ((type != ZEBRA_ROUTE_TABLE && type != ZEBRA_ROUTE_TABLE_DIRECT) ||
instance != 0)
return _bgp_redistribute_unset(bgp, afi, type, instance);
/* walk over instance */
if (!bgp->redist[afi][type])
return;
for (ALL_LIST_ELEMENTS(bgp->redist[afi][type], node, nnode, red))
_bgp_redistribute_unset(bgp, afi, type, red->instance);
}
void bgp_redistribute_redo(struct bgp *bgp)
{
afi_t afi;
int i;
struct list *red_list;
struct listnode *node;
struct bgp_redist *red;
for (afi = AFI_IP; afi < AFI_MAX; afi++) {
for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
red_list = bgp->redist[afi][i];
if (!red_list)
continue;
for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
bgp_redistribute_resend(bgp, afi, i,
red->instance);
}
}
}
}
void bgp_zclient_reset(void)
{
zclient_reset(zclient);
}
/* Register this instance with Zebra. Invoked upon connect (for
* default instance) and when other VRFs are learnt (or created and
* already learnt).
*/
void bgp_zebra_instance_register(struct bgp *bgp)
{
/* Don't try to register if we're not connected to Zebra */
if (!zclient || zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Registering %s", bgp->name_pretty);
/* Register for router-id, interfaces, redistributed routes. */
zclient_send_reg_requests(zclient, bgp->vrf_id);
/* For EVPN instance, register to learn about VNIs, if appropriate. */
if (bgp->advertise_all_vni)
bgp_zebra_advertise_all_vni(bgp, 1);
bgp_nht_register_nexthops(bgp);
/*
* Request SRv6 locator information from Zebra, if SRv6 is enabled
* and a locator is configured for this BGP instance.
*/
if (bgp->srv6_enabled && bgp->srv6_locator_name[0] != '\0' && !bgp->srv6_locator)
bgp_zebra_srv6_manager_get_locator(bgp->srv6_locator_name);
}
/* Deregister this instance with Zebra. Invoked upon the instance
* being deleted (default or VRF) and it is already registered.
*/
void bgp_zebra_instance_deregister(struct bgp *bgp)
{
/* Don't try to deregister if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Deregistering %s", bgp->name_pretty);
/* For EVPN instance, unregister learning about VNIs, if appropriate. */
if (bgp->advertise_all_vni)
bgp_zebra_advertise_all_vni(bgp, 0);
/* Deregister for router-id, interfaces, redistributed routes. */
zclient_send_dereg_requests(zclient, bgp->vrf_id);
}
void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
{
uint32_t ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
if (CHECK_FLAG(bgp->flags, BGP_FLAG_IPV6_NO_AUTO_RA))
return;
/* Don't try to initiate if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
peer->host);
/*
* If unnumbered peer (peer->ifp) call thru zapi to start RAs.
* If we don't have an ifp pointer, call function to find the
* ifps for a numbered enhe peer to turn RAs on.
*/
peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
peer->ifp, 1, ra_interval)
: bgp_nht_reg_enhe_cap_intfs(peer);
}
void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
{
/* Don't try to terminate if we're not connected to Zebra */
if (zclient->sock < 0)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
peer->host);
/*
* If unnumbered peer (peer->ifp) call thru zapi to stop RAs.
* If we don't have an ifp pointer, call function to find the
* ifps for a numbered enhe peer to turn RAs off.
*/
peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
peer->ifp, 0, 0)
: bgp_nht_dereg_enhe_cap_intfs(peer);
}
int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, cannot advertise subnet",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
stream_putc(s, advertise);
stream_put3(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
stream_putc(s, advertise);
stream_putl(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
{
struct stream *s = NULL;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, not installing gw_macip",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
stream_putc(s, advertise);
stream_putl(s, vni);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
enum vxlan_flood_control flood_ctrl)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: No zebra instance to talk to, not installing all vni",
__func__);
return 0;
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
stream_putc(s, flood_ctrl);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
stream_putc(s, advertise);
/* Also inform current BUM handling setting. This is really
* relevant only when 'advertise' is set.
*/
stream_putc(s, bgp->vxlan_flood_ctrl);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
int bgp_zebra_dup_addr_detection(struct bgp *bgp)
{
struct stream *s;
/* Check socket. */
if (!zclient || zclient->sock < 0)
return 0;
/* Don't try to register if Zebra doesn't know of this instance. */
if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
bgp->evpn_info->dup_addr_detect ?
"enable" : "disable",
bgp->evpn_info->dad_max_moves,
bgp->evpn_info->dad_time,
bgp->evpn_info->dad_freeze ?
"enable" : "disable",
bgp->evpn_info->dad_freeze_time);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
bgp->vrf_id);
stream_putl(s, bgp->evpn_info->dup_addr_detect);
stream_putl(s, bgp->evpn_info->dad_time);
stream_putl(s, bgp->evpn_info->dad_max_moves);
stream_putl(s, bgp->evpn_info->dad_freeze);
stream_putl(s, bgp->evpn_info->dad_freeze_time);
stream_putw_at(s, 0, stream_get_endp(s));
return zclient_send_message(zclient);
}
static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t seqno, priority, unique;
enum zapi_rule_notify_owner note;
struct bgp_pbr_action *bgp_pbra;
struct bgp_pbr_rule *bgp_pbr = NULL;
char ifname[IFNAMSIZ + 1];
if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
ifname, &note))
return -1;
bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
if (!bgp_pbra) {
/* look in bgp pbr rule */
bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP rule (%u)",
__func__, unique);
return 0;
}
}
switch (note) {
case ZAPI_RULE_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE_FAIL_INSTALL", __func__);
if (bgp_pbra) {
bgp_pbra->installed = false;
bgp_pbra->install_in_progress = false;
} else {
bgp_pbr->installed = false;
bgp_pbr->install_in_progress = false;
}
break;
case ZAPI_RULE_INSTALLED:
if (bgp_pbra) {
bgp_pbra->installed = true;
bgp_pbra->install_in_progress = false;
} else {
struct bgp_path_info *path;
struct bgp_path_info_extra *extra;
bgp_pbr->installed = true;
bgp_pbr->install_in_progress = false;
bgp_pbr->action->refcnt++;
/* link bgp_info to bgp_pbr */
path = (struct bgp_path_info *)bgp_pbr->path;
extra = bgp_path_info_extra_get(path);
if (!extra->flowspec) {
extra->flowspec =
XCALLOC(MTYPE_BGP_ROUTE_EXTRA_FS,
sizeof(struct bgp_path_info_extra_fs));
extra->flowspec->bgp_fs_iprule = NULL;
extra->flowspec->bgp_fs_pbr = NULL;
}
listnode_add_force(&extra->flowspec->bgp_fs_iprule, bgp_pbr);
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE_INSTALLED", __func__);
break;
case ZAPI_RULE_FAIL_REMOVE:
case ZAPI_RULE_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received RULE REMOVED", __func__);
break;
}
return 0;
}
static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
enum zapi_ipset_notify_owner note;
struct bgp_pbr_match *bgp_pbim;
if (!zapi_ipset_notify_decode(zclient->ibuf,
&unique,
&note))
return -1;
bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
if (!bgp_pbim) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPSET_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_FAIL_INSTALL", __func__);
bgp_pbim->installed = false;
bgp_pbim->install_in_progress = false;
break;
case ZAPI_IPSET_INSTALLED:
bgp_pbim->installed = true;
bgp_pbim->install_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_INSTALLED", __func__);
break;
case ZAPI_IPSET_FAIL_REMOVE:
case ZAPI_IPSET_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET REMOVED", __func__);
break;
}
return 0;
}
static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
char ipset_name[ZEBRA_IPSET_NAME_SIZE];
enum zapi_ipset_entry_notify_owner note;
struct bgp_pbr_match_entry *bgp_pbime;
if (!zapi_ipset_entry_notify_decode(
zclient->ibuf,
&unique,
ipset_name,
&note))
return -1;
bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
ipset_name,
unique);
if (!bgp_pbime) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%s: Fail to look BGP match entry (%u, ID %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
__func__);
bgp_pbime->installed = false;
bgp_pbime->install_in_progress = false;
break;
case ZAPI_IPSET_ENTRY_INSTALLED:
{
struct bgp_path_info *path;
struct bgp_path_info_extra *extra;
bgp_pbime->installed = true;
bgp_pbime->install_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
__func__);
/* link bgp_path_info to bpme */
path = (struct bgp_path_info *)bgp_pbime->path;
extra = bgp_path_info_extra_get(path);
if (!extra->flowspec) {
extra->flowspec =
XCALLOC(MTYPE_BGP_ROUTE_EXTRA_FS,
sizeof(struct bgp_path_info_extra_fs));
extra->flowspec->bgp_fs_iprule = NULL;
extra->flowspec->bgp_fs_pbr = NULL;
}
listnode_add_force(&extra->flowspec->bgp_fs_pbr, bgp_pbime);
}
break;
case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
case ZAPI_IPSET_ENTRY_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
__func__);
break;
}
return 0;
}
static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
{
uint32_t unique;
enum zapi_iptable_notify_owner note;
struct bgp_pbr_match *bgpm;
if (!zapi_iptable_notify_decode(
zclient->ibuf,
&unique,
&note))
return -1;
bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
if (!bgpm) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Fail to look BGP iptable (%u %u)",
__func__, note, unique);
return 0;
}
switch (note) {
case ZAPI_IPTABLE_FAIL_INSTALL:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
__func__);
bgpm->installed_in_iptable = false;
bgpm->install_iptable_in_progress = false;
break;
case ZAPI_IPTABLE_INSTALLED:
bgpm->installed_in_iptable = true;
bgpm->install_iptable_in_progress = false;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE_INSTALLED", __func__);
bgpm->action->refcnt++;
break;
case ZAPI_IPTABLE_FAIL_REMOVE:
case ZAPI_IPTABLE_REMOVED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Received IPTABLE REMOVED", __func__);
break;
}
return 0;
}
/* Process route notification messages from RIB */
static int bgp_zebra_route_notify_owner(int command, struct zclient *zclient,
zebra_size_t length, vrf_id_t vrf_id)
{
struct prefix p;
enum zapi_route_notify_owner note;
uint32_t table_id;
afi_t afi;
safi_t safi;
struct bgp_dest *dest;
struct bgp *bgp;
struct bgp_path_info *pi, *new_select;
if (!zapi_route_notify_decode(zclient->ibuf, &p, &table_id, &note,
&afi, &safi)) {
zlog_err("%s : error in msg decode", __func__);
return -1;
}
/* Get the bgp instance */
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp) {
flog_err(EC_BGP_INVALID_BGP_INSTANCE,
"%s : bgp instance not found vrf %d", __func__,
vrf_id);
return -1;
}
/* Find the bgp route node */
dest = bgp_safi_node_lookup(bgp->rib[afi][safi], safi, &p,
&bgp->vrf_prd);
if (!dest) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %pFX does not exist in the BGP table, nothing to do for %u",
__func__, &p, note);
return -1;
}
switch (note) {
case ZAPI_ROUTE_INSTALLED:
new_select = NULL;
/* Clear the flags so that route can be processed */
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
SET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("route %pBD : INSTALLED", dest);
/* Find the best route */
for (pi = dest->info; pi; pi = pi->next) {
/* Process aggregate route */
bgp_aggregate_increment(bgp, &p, pi, afi, safi);
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
new_select = pi;
}
/* Advertise the route */
if (new_select)
group_announce_route(bgp, afi, safi, dest, new_select);
else {
flog_err(EC_BGP_INVALID_ROUTE,
"selected route %pBD not found", dest);
bgp_dest_unlock_node(dest);
return -1;
}
break;
case ZAPI_ROUTE_REMOVED:
/* Route deleted from dataplane, reset the installed flag
* so that route can be reinstalled when client sends
* route add later
*/
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("route %pBD: Removed from Fib", dest);
break;
case ZAPI_ROUTE_FAIL_INSTALL:
new_select = NULL;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("route: %pBD Failed to Install into Fib",
dest);
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
new_select = pi;
}
if (new_select)
group_announce_route(bgp, afi, safi, dest, new_select);
/* Error will be logged by zebra module */
break;
case ZAPI_ROUTE_BETTER_ADMIN_WON:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("route: %pBD removed due to better admin won",
dest);
new_select = NULL;
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
bgp_aggregate_decrement(bgp, &p, pi, afi, safi);
if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
new_select = pi;
}
if (new_select)
group_announce_route(bgp, afi, safi, dest, new_select);
/* No action required */
break;
case ZAPI_ROUTE_REMOVE_FAIL:
zlog_warn("%s: Route %pBD failure to remove", __func__, dest);
break;
}
bgp_dest_unlock_node(dest);
return 0;
}
/* this function is used to forge ip rule,
* - either for iptable/ipset using fwmark id
* - or for sample ip rule cmd
*/
static void bgp_encode_pbr_rule_action(struct stream *s,
struct bgp_pbr_action *pbra,
struct bgp_pbr_rule *pbr)
{
uint8_t fam = AF_INET;
struct pbr_rule r;
if (pbra->nh.type == NEXTHOP_TYPE_IPV6)
fam = AF_INET6;
/*
* Convert to canonical form
*/
memset(&r, 0, sizeof(r));
/* r.seq unused */
if (pbr)
r.priority = pbr->priority;
/* ruleno unused - priority change
* ruleno permits distinguishing various FS PBR entries
* - FS PBR entries based on ipset/iptables
* - FS PBR entries based on iprule
* the latter may contain default routing information injected by FS
*/
if (pbr)
r.unique = pbr->unique;
else
r.unique = pbra->unique;
r.family = fam;
/* filter */
if (pbr && pbr->flags & MATCH_IP_SRC_SET) {
SET_FLAG(r.filter.filter_bm, PBR_FILTER_SRC_IP);
r.filter.src_ip = pbr->src;
} else {
/* ??? */
r.filter.src_ip.family = fam;
}
if (pbr && pbr->flags & MATCH_IP_DST_SET) {
SET_FLAG(r.filter.filter_bm, PBR_FILTER_DST_IP);
r.filter.dst_ip = pbr->dst;
} else {
/* ??? */
r.filter.dst_ip.family = fam;
}
/* src_port, dst_port, pcp, dsfield not used */
if (!pbr) {
SET_FLAG(r.filter.filter_bm, PBR_FILTER_FWMARK);
r.filter.fwmark = pbra->fwmark;
}
SET_FLAG(r.action.flags, PBR_ACTION_TABLE); /* always valid */
r.action.table = pbra->table_id;
zapi_pbr_rule_encode(s, &r);
}
static void bgp_encode_pbr_ipset_match(struct stream *s,
struct bgp_pbr_match *pbim)
{
stream_putl(s, pbim->unique);
stream_putl(s, pbim->type);
stream_putc(s, pbim->family);
stream_put(s, pbim->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
}
static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
struct bgp_pbr_match_entry *pbime)
{
stream_putl(s, pbime->unique);
/* check that back pointer is not null */
stream_put(s, pbime->backpointer->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
stream_putc(s, pbime->src.family);
stream_putc(s, pbime->src.prefixlen);
stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
stream_putc(s, pbime->dst.family);
stream_putc(s, pbime->dst.prefixlen);
stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
stream_putw(s, pbime->src_port_min);
stream_putw(s, pbime->src_port_max);
stream_putw(s, pbime->dst_port_min);
stream_putw(s, pbime->dst_port_max);
stream_putc(s, pbime->proto);
}
static void bgp_encode_pbr_iptable_match(struct stream *s,
struct bgp_pbr_action *bpa,
struct bgp_pbr_match *pbm)
{
stream_putl(s, pbm->unique2);
stream_putl(s, pbm->type);
stream_putl(s, pbm->flags);
/* TODO: correlate with what is contained
* into bgp_pbr_action.
* currently only forward supported
*/
if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
stream_putl(s, ZEBRA_IPTABLES_DROP);
else
stream_putl(s, ZEBRA_IPTABLES_FORWARD);
stream_putl(s, bpa->fwmark);
stream_put(s, pbm->ipset_name,
ZEBRA_IPSET_NAME_SIZE);
stream_putc(s, pbm->family);
stream_putw(s, pbm->pkt_len_min);
stream_putw(s, pbm->pkt_len_max);
stream_putw(s, pbm->tcp_flags);
stream_putw(s, pbm->tcp_mask_flags);
stream_putc(s, pbm->dscp_value);
stream_putc(s, pbm->fragment);
stream_putc(s, pbm->protocol);
stream_putw(s, pbm->flow_label);
}
/* BGP has established connection with Zebra. */
static void bgp_zebra_connected(struct zclient *zclient)
{
struct bgp *bgp;
zclient_num_connects++; /* increment even if not responding */
/* Send the client registration */
bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, VRF_DEFAULT);
/* At this point, we may or may not have BGP instances configured, but
* we're only interested in the default VRF (others wouldn't have learnt
* the VRF from Zebra yet.)
*/
bgp = bgp_get_default();
if (!bgp)
return;
bgp_zebra_instance_register(bgp);
/* TODO - What if we have peers and networks configured, do we have to
* kick-start them?
*/
BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
}
void bgp_zebra_process_remote_routes_for_l2vni(struct event *e)
{
/*
* If we have learnt and retained remote routes (VTEPs, MACs)
* for this VNI, install them.
*/
install_uninstall_routes_for_vni(NULL, NULL, true);
/*
* If there are VNIs still pending to be processed, schedule them
* after a small sleep so that CPU can be used for other purposes.
*/
if (zebra_l2_vni_count(&bm->zebra_l2_vni_head))
event_add_timer_msec(bm->master, bgp_zebra_process_remote_routes_for_l2vni, NULL,
20, &bm->t_bgp_zebra_l2_vni);
}
void bgp_zebra_process_remote_routes_for_l3vrf(struct event *e)
{
/*
* Install/Uninstall all remote routes belonging to l3vni
*
* NOTE:
* - At this point it does not matter whether we call
* install_routes_for_vrf/uninstall_routes_for_vrf.
* - Since we pass struct bgp as NULL,
* * we iterate the bm FIFO list
* * the second variable (true) is ignored as well and
* calculated based on the BGP-VRFs flags for ADD/DELETE.
*/
install_uninstall_routes_for_vrf(NULL, true);
/*
* If there are L3VNIs still pending to be processed, schedule them
* after a small sleep so that CPU can be used for other purposes.
*/
if (zebra_l3_vni_count(&bm->zebra_l3_vni_head)) {
event_add_timer_msec(bm->master, bgp_zebra_process_remote_routes_for_l3vrf, NULL,
20, &bm->t_bgp_zebra_l3_vni);
}
}
static int bgp_zebra_process_local_es_add(ZAPI_CALLBACK_ARGS)
{
esi_t esi;
struct bgp *bgp = NULL;
struct stream *s = NULL;
char buf[ESI_STR_LEN];
struct in_addr originator_ip;
uint8_t active;
uint8_t bypass;
uint16_t df_pref;
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
s = zclient->ibuf;
stream_get(&esi, s, sizeof(esi_t));
originator_ip.s_addr = stream_get_ipv4(s);
active = stream_getc(s);
df_pref = stream_getw(s);
bypass = stream_getc(s);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"Rx add ESI %s originator-ip %pI4 active %u df_pref %u %s",
esi_to_str(&esi, buf, sizeof(buf)), &originator_ip,
active, df_pref, bypass ? "bypass" : "");
frrtrace(5, frr_bgp, evpn_mh_local_es_add_zrecv, &esi, originator_ip,
active, bypass, df_pref);
bgp_evpn_local_es_add(bgp, &esi, originator_ip, active, df_pref,
!!bypass);
return 0;
}
static int bgp_zebra_process_local_es_del(ZAPI_CALLBACK_ARGS)
{
esi_t esi;
struct bgp *bgp = NULL;
struct stream *s = NULL;
char buf[ESI_STR_LEN];
memset(&esi, 0, sizeof(esi_t));
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
s = zclient->ibuf;
stream_get(&esi, s, sizeof(esi_t));
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx del ESI %s",
esi_to_str(&esi, buf, sizeof(buf)));
frrtrace(1, frr_bgp, evpn_mh_local_es_del_zrecv, &esi);
bgp_evpn_local_es_del(bgp, &esi);
return 0;
}
static int bgp_zebra_process_local_es_evi(ZAPI_CALLBACK_ARGS)
{
esi_t esi;
vni_t vni;
struct bgp *bgp;
struct stream *s;
char buf[ESI_STR_LEN];
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
s = zclient->ibuf;
stream_get(&esi, s, sizeof(esi_t));
vni = stream_getl(s);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx %s ESI %s VNI %u",
(cmd == ZEBRA_VNI_ADD) ? "add" : "del",
esi_to_str(&esi, buf, sizeof(buf)), vni);
if (cmd == ZEBRA_LOCAL_ES_EVI_ADD) {
frrtrace(2, frr_bgp, evpn_mh_local_es_evi_add_zrecv, &esi, vni);
bgp_evpn_local_es_evi_add(bgp, &esi, vni);
} else {
frrtrace(2, frr_bgp, evpn_mh_local_es_evi_del_zrecv, &esi, vni);
bgp_evpn_local_es_evi_del(bgp, &esi, vni);
}
return 0;
}
static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
{
int filter = 0;
vni_t l3vni = 0;
struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
struct in_addr originator_ip;
struct stream *s;
ifindex_t svi_ifindex;
bool is_anycast_mac = false;
memset(&svi_rmac, 0, sizeof(svi_rmac));
memset(&originator_ip, 0, sizeof(originator_ip));
s = zclient->ibuf;
l3vni = stream_getl(s);
if (cmd == ZEBRA_L3VNI_ADD) {
stream_get(&svi_rmac, s, sizeof(struct ethaddr));
originator_ip.s_addr = stream_get_ipv4(s);
stream_get(&filter, s, sizeof(int));
svi_ifindex = stream_getl(s);
stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
is_anycast_mac = stream_getl(s);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx L3VNI ADD VRF %s VNI %u Originator-IP %pI4 RMAC svi-mac %pEA vrr-mac %pEA filter %s svi-if %u",
vrf_id_to_name(vrf_id), l3vni,
&originator_ip, &svi_rmac, &vrr_rmac,
filter ? "prefix-routes-only" : "none",
svi_ifindex);
frrtrace(8, frr_bgp, evpn_local_l3vni_add_zrecv, l3vni, vrf_id,
&svi_rmac, &vrr_rmac, filter, originator_ip,
svi_ifindex, is_anycast_mac);
bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
originator_ip, filter, svi_ifindex,
is_anycast_mac);
} else {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx L3VNI DEL VRF %s VNI %u",
vrf_id_to_name(vrf_id), l3vni);
frrtrace(2, frr_bgp, evpn_local_l3vni_del_zrecv, l3vni, vrf_id);
bgp_evpn_local_l3vni_del(l3vni, vrf_id);
}
return 0;
}
static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
{
struct stream *s;
vni_t vni;
struct bgp *bgp;
struct in_addr vtep_ip = {INADDR_ANY};
vrf_id_t tenant_vrf_id = VRF_DEFAULT;
struct in_addr mcast_grp = {INADDR_ANY};
ifindex_t svi_ifindex = 0;
s = zclient->ibuf;
vni = stream_getl(s);
if (cmd == ZEBRA_VNI_ADD) {
vtep_ip.s_addr = stream_get_ipv4(s);
stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
mcast_grp.s_addr = stream_get_ipv4(s);
stream_get(&svi_ifindex, s, sizeof(ifindex_t));
}
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"Rx VNI %s VRF %s VNI %u tenant-vrf %s SVI ifindex %u",
(cmd == ZEBRA_VNI_ADD) ? "add" : "del",
vrf_id_to_name(vrf_id), vni,
vrf_id_to_name(tenant_vrf_id), svi_ifindex);
if (cmd == ZEBRA_VNI_ADD) {
frrtrace(4, frr_bgp, evpn_local_vni_add_zrecv, vni, vtep_ip,
tenant_vrf_id, mcast_grp);
return bgp_evpn_local_vni_add(
bgp, vni,
vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
tenant_vrf_id, mcast_grp, svi_ifindex);
} else {
frrtrace(1, frr_bgp, evpn_local_vni_del_zrecv, vni);
return bgp_evpn_local_vni_del(bgp, vni);
}
}
static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
{
struct stream *s;
vni_t vni;
struct bgp *bgp;
struct ethaddr mac;
struct ipaddr ip;
int ipa_len;
uint8_t flags = 0;
uint32_t seqnum = 0;
int state = 0;
char buf2[ESI_STR_LEN];
esi_t esi;
memset(&ip, 0, sizeof(ip));
s = zclient->ibuf;
vni = stream_getl(s);
stream_get(&mac.octet, s, ETH_ALEN);
ipa_len = stream_getl(s);
if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
&& ipa_len != IPV6_MAX_BYTELEN) {
flog_err(EC_BGP_MACIP_LEN,
"%u:Recv MACIP %s with invalid IP addr length %d",
vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
ipa_len);
return -1;
}
if (ipa_len) {
ip.ipa_type =
(ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
stream_get(&ip.ip.addr, s, ipa_len);
}
if (cmd == ZEBRA_MACIP_ADD) {
flags = stream_getc(s);
seqnum = stream_getl(s);
stream_get(&esi, s, sizeof(esi_t));
} else {
state = stream_getl(s);
memset(&esi, 0, sizeof(esi_t));
}
bgp = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp)
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug(
"%u:Recv MACIP %s f 0x%x MAC %pEA IP %pIA VNI %u seq %u state %d ESI %s",
vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del", flags,
&mac, &ip, vni, seqnum, state,
esi_to_str(&esi, buf2, sizeof(buf2)));
if (cmd == ZEBRA_MACIP_ADD) {
frrtrace(6, frr_bgp, evpn_local_macip_add_zrecv, vni, &mac, &ip,
flags, seqnum, &esi);
return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
flags, seqnum, &esi);
} else {
frrtrace(4, frr_bgp, evpn_local_macip_del_zrecv, vni, &mac, &ip,
state);
return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
}
}
static int bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
{
struct stream *s = NULL;
struct bgp *bgp_vrf = NULL;
struct prefix p;
memset(&p, 0, sizeof(p));
s = zclient->ibuf;
stream_get(&p, s, sizeof(struct prefix));
bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
if (!bgp_vrf)
return 0;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Recv prefix %pFX %s on vrf %s", &p,
(cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
vrf_id_to_name(vrf_id));
if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
if (p.family == AF_INET)
bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
AFI_IP, SAFI_UNICAST);
else
bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
AFI_IP6, SAFI_UNICAST);
} else {
if (p.family == AF_INET)
bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
SAFI_UNICAST);
else
bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
SAFI_UNICAST);
}
return 0;
}
extern struct zebra_privs_t bgpd_privs;
static int bgp_ifp_create(struct interface *ifp)
{
struct bgp *bgp;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Rx Intf add VRF %s IF %s", ifp->vrf->name,
ifp->name);
/* We don't need to check for vrf->bgp link to add this local MAC
* to the hash table as the tenant VRF might not have the BGP instance.
*/
bgp_mac_add_mac_entry(ifp);
bgp = ifp->vrf->info;
if (!bgp)
return 0;
bgp_update_interface_nbrs(bgp, ifp, ifp);
hook_call(bgp_vrf_status_changed, bgp, ifp);
if (bgp_get_default() && if_is_loopback(ifp)) {
vpn_leak_zebra_vrf_label_update(bgp, AFI_IP);
vpn_leak_zebra_vrf_label_update(bgp, AFI_IP6);
vpn_leak_zebra_vrf_sid_update(bgp, AFI_IP);
vpn_leak_zebra_vrf_sid_update(bgp, AFI_IP6);
vpn_leak_postchange_all();
}
return 0;
}
static int bgp_zebra_process_srv6_locator_chunk(ZAPI_CALLBACK_ARGS)
{
struct stream *s = NULL;
struct bgp *bgp = bgp_get_default();
struct listnode *node;
struct srv6_locator_chunk *c;
struct srv6_locator_chunk *chunk = srv6_locator_chunk_alloc();
s = zclient->ibuf;
zapi_srv6_locator_chunk_decode(s, chunk);
if (strcmp(bgp->srv6_locator_name, chunk->locator_name) != 0) {
zlog_err("%s: Locator name unmatch %s:%s", __func__,
bgp->srv6_locator_name, chunk->locator_name);
srv6_locator_chunk_free(&chunk);
return 0;
}
for (ALL_LIST_ELEMENTS_RO(bgp->srv6_locator_chunks, node, c)) {
if (!prefix_cmp(&c->prefix, &chunk->prefix)) {
srv6_locator_chunk_free(&chunk);
return 0;
}
}
listnode_add(bgp->srv6_locator_chunks, chunk);
vpn_leak_postchange_all();
return 0;
}
/**
* Internal function to process an SRv6 locator
*
* @param locator The locator to be processed
*/
static int bgp_zebra_process_srv6_locator_internal(struct srv6_locator *locator)
{
struct bgp *bgp = bgp_get_default();
if (!bgp || !bgp->srv6_enabled || !locator)
return -1;
/*
* Check if the main BGP instance is configured to use the received
* locator
*/
if (strcmp(bgp->srv6_locator_name, locator->name) != 0) {
zlog_err("%s: SRv6 Locator name unmatch %s:%s", __func__,
bgp->srv6_locator_name, locator->name);
return 0;
}
zlog_info("%s: Received SRv6 locator %s %pFX, loc-block-len=%u, loc-node-len=%u func-len=%u, arg-len=%u",
__func__, locator->name, &locator->prefix,
locator->block_bits_length, locator->node_bits_length,
locator->function_bits_length, locator->argument_bits_length);
/* Store the locator in the main BGP instance */
bgp->srv6_locator = srv6_locator_alloc(locator->name);
srv6_locator_copy(bgp->srv6_locator, locator);
/*
* Process VPN-to-VRF and VRF-to-VPN leaks to advertise new locator
* and SIDs.
*/
vpn_leak_postchange_all();
return 0;
}
static int bgp_zebra_srv6_sid_notify(ZAPI_CALLBACK_ARGS)
{
struct bgp *bgp = bgp_get_default();
struct srv6_locator *locator;
struct srv6_sid_ctx ctx;
struct in6_addr sid_addr;
enum zapi_srv6_sid_notify note;
struct bgp *bgp_vrf;
struct vrf *vrf;
struct listnode *node, *nnode;
char buf[256];
struct in6_addr *tovpn_sid;
struct prefix_ipv6 tmp_prefix;
uint32_t sid_func;
bool found = false;
if (!bgp || !bgp->srv6_enabled)
return -1;
if (!bgp->srv6_locator) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: ignoring SRv6 SID notify: locator not set",
__func__);
return -1;
}
/* Decode the received notification message */
if (!zapi_srv6_sid_notify_decode(zclient->ibuf, &ctx, &sid_addr,
&sid_func, NULL, &note, NULL)) {
zlog_err("%s : error in msg decode", __func__);
return -1;
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: received SRv6 SID notify: ctx %s sid_value %pI6 %s",
__func__, srv6_sid_ctx2str(buf, sizeof(buf), &ctx),
&sid_addr, zapi_srv6_sid_notify2str(note));
/* Get the BGP instance for which the SID has been requested, if any */
for (ALL_LIST_ELEMENTS(bm->bgp, node, nnode, bgp_vrf)) {
vrf = vrf_lookup_by_id(bgp_vrf->vrf_id);
if (!vrf)
continue;
if (vrf->vrf_id == ctx.vrf_id) {
found = true;
break;
}
}
if (!found) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: ignoring SRv6 SID notify: No VRF suitable for received SID ctx %s sid_value %pI6",
__func__,
srv6_sid_ctx2str(buf, sizeof(buf), &ctx),
&sid_addr);
return -1;
}
/* Handle notification */
switch (note) {
case ZAPI_SRV6_SID_ALLOCATED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("SRv6 SID %pI6 %s : ALLOCATED", &sid_addr,
srv6_sid_ctx2str(buf, sizeof(buf), &ctx));
/* Verify that the received SID belongs to the configured locator */
tmp_prefix.family = AF_INET6;
tmp_prefix.prefixlen = IPV6_MAX_BITLEN;
tmp_prefix.prefix = sid_addr;
if (!prefix_match((struct prefix *)&bgp->srv6_locator->prefix,
(struct prefix *)&tmp_prefix))
return -1;
/* Get label */
uint8_t func_len = bgp->srv6_locator->function_bits_length;
uint8_t shift_len = BGP_PREFIX_SID_SRV6_MAX_FUNCTION_LENGTH -
func_len;
int label = sid_func << shift_len;
/* Un-export VPN to VRF routes */
vpn_leak_prechange(BGP_VPN_POLICY_DIR_TOVPN, AFI_IP, bgp,
bgp_vrf);
vpn_leak_prechange(BGP_VPN_POLICY_DIR_TOVPN, AFI_IP6, bgp,
bgp_vrf);
locator = srv6_locator_alloc(bgp->srv6_locator_name);
srv6_locator_copy(locator, bgp->srv6_locator);
/* Store SID, locator, and label */
tovpn_sid = XCALLOC(MTYPE_BGP_SRV6_SID, sizeof(struct in6_addr));
*tovpn_sid = sid_addr;
if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT6) {
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
srv6_locator_free(
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator);
sid_unregister(bgp,
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid = tovpn_sid;
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator = locator;
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_transpose_label =
label;
} else if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT4) {
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
srv6_locator_free(
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator);
sid_unregister(bgp,
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid = tovpn_sid;
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator = locator;
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_transpose_label =
label;
} else if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT46) {
XFREE(MTYPE_BGP_SRV6_SID, bgp_vrf->tovpn_sid);
srv6_locator_free(bgp_vrf->tovpn_sid_locator);
sid_unregister(bgp, bgp_vrf->tovpn_sid);
bgp_vrf->tovpn_sid = tovpn_sid;
bgp_vrf->tovpn_sid_locator = locator;
bgp_vrf->tovpn_sid_transpose_label = label;
} else {
srv6_locator_free(locator);
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Unsupported behavior. Not assigned SRv6 SID: %s %pI6",
srv6_sid_ctx2str(buf, sizeof(buf),
&ctx),
&sid_addr);
return -1;
}
/* Register the new SID */
sid_register(bgp, tovpn_sid, bgp->srv6_locator_name);
/* Export VPN to VRF routes */
vpn_leak_postchange_all();
break;
case ZAPI_SRV6_SID_RELEASED:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("SRv6 SID %pI6 %s: RELEASED", &sid_addr,
srv6_sid_ctx2str(buf, sizeof(buf), &ctx));
/* Un-export VPN to VRF routes */
vpn_leak_prechange(BGP_VPN_POLICY_DIR_TOVPN, AFI_IP, bgp,
bgp_vrf);
vpn_leak_prechange(BGP_VPN_POLICY_DIR_TOVPN, AFI_IP6, bgp,
bgp_vrf);
/* Remove SID, locator, and label */
if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT6) {
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
if (bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator) {
srv6_locator_free(bgp->vpn_policy[AFI_IP6]
.tovpn_sid_locator);
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator =
NULL;
}
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_transpose_label =
0;
/* Unregister the SID */
sid_unregister(bgp,
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
} else if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT4) {
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
if (bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator) {
srv6_locator_free(bgp->vpn_policy[AFI_IP]
.tovpn_sid_locator);
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator =
NULL;
}
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_transpose_label =
0;
/* Unregister the SID */
sid_unregister(bgp,
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
} else if (ctx.behavior == ZEBRA_SEG6_LOCAL_ACTION_END_DT46) {
XFREE(MTYPE_BGP_SRV6_SID, bgp_vrf->tovpn_sid);
if (bgp_vrf->tovpn_sid_locator) {
srv6_locator_free(bgp_vrf->tovpn_sid_locator);
bgp_vrf->tovpn_sid_locator = NULL;
}
bgp_vrf->tovpn_sid_transpose_label = 0;
/* Unregister the SID */
sid_unregister(bgp, bgp_vrf->tovpn_sid);
} else {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("Unsupported behavior. Not assigned SRv6 SID: %s %pI6",
srv6_sid_ctx2str(buf, sizeof(buf),
&ctx),
&sid_addr);
return -1;
}
/* Export VPN to VRF routes*/
vpn_leak_postchange_all();
break;
case ZAPI_SRV6_SID_FAIL_ALLOC:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("SRv6 SID %pI6 %s: Failed to allocate",
&sid_addr,
srv6_sid_ctx2str(buf, sizeof(buf), &ctx));
/* Error will be logged by zebra module */
break;
case ZAPI_SRV6_SID_FAIL_RELEASE:
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: SRv6 SID %pI6 %s failure to release",
__func__, &sid_addr,
srv6_sid_ctx2str(buf, sizeof(buf), &ctx));
/* Error will be logged by zebra module */
break;
}
return 0;
}
static int bgp_zebra_process_srv6_locator_add(ZAPI_CALLBACK_ARGS)
{
struct srv6_locator loc = {};
struct bgp *bgp = bgp_get_default();
if (!bgp || !bgp->srv6_enabled)
return 0;
if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
return -1;
return bgp_zebra_process_srv6_locator_internal(&loc);
}
static int bgp_zebra_process_srv6_locator_delete(ZAPI_CALLBACK_ARGS)
{
struct srv6_locator loc = {};
struct bgp *bgp = bgp_get_default();
struct listnode *node, *nnode;
struct srv6_locator_chunk *chunk;
struct srv6_locator *tovpn_sid_locator;
struct bgp_srv6_function *func;
struct bgp *bgp_vrf;
struct in6_addr *tovpn_sid;
struct prefix_ipv6 tmp_prefi;
if (!bgp)
return 0;
if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
return -1;
// clear SRv6 locator
if (bgp->srv6_locator) {
srv6_locator_free(bgp->srv6_locator);
bgp->srv6_locator = NULL;
}
// refresh chunks
for (ALL_LIST_ELEMENTS(bgp->srv6_locator_chunks, node, nnode, chunk))
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&chunk->prefix)) {
listnode_delete(bgp->srv6_locator_chunks, chunk);
srv6_locator_chunk_free(&chunk);
}
// refresh functions
for (ALL_LIST_ELEMENTS(bgp->srv6_functions, node, nnode, func)) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = func->sid;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi)) {
listnode_delete(bgp->srv6_functions, func);
srv6_function_free(func);
}
}
// refresh tovpn_sid
for (ALL_LIST_ELEMENTS_RO(bm->bgp, node, bgp_vrf)) {
if (bgp_vrf->inst_type != BGP_INSTANCE_TYPE_VRF)
continue;
// refresh vpnv4 tovpn_sid
tovpn_sid = bgp_vrf->vpn_policy[AFI_IP].tovpn_sid;
if (tovpn_sid) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = *tovpn_sid;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi))
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
}
// refresh vpnv6 tovpn_sid
tovpn_sid = bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid;
if (tovpn_sid) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = *tovpn_sid;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi))
XFREE(MTYPE_BGP_SRV6_SID,
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
}
/* refresh per-vrf tovpn_sid */
tovpn_sid = bgp_vrf->tovpn_sid;
if (tovpn_sid) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = *tovpn_sid;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi))
XFREE(MTYPE_BGP_SRV6_SID, bgp_vrf->tovpn_sid);
}
}
vpn_leak_postchange_all();
/* refresh tovpn_sid_locator */
for (ALL_LIST_ELEMENTS_RO(bm->bgp, node, bgp_vrf)) {
if (bgp_vrf->inst_type != BGP_INSTANCE_TYPE_VRF)
continue;
/* refresh vpnv4 tovpn_sid_locator */
tovpn_sid_locator =
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator;
if (tovpn_sid_locator) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = tovpn_sid_locator->prefix.prefix;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi)) {
srv6_locator_free(bgp_vrf->vpn_policy[AFI_IP]
.tovpn_sid_locator);
bgp_vrf->vpn_policy[AFI_IP].tovpn_sid_locator =
NULL;
}
}
/* refresh vpnv6 tovpn_sid_locator */
tovpn_sid_locator =
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator;
if (tovpn_sid_locator) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = tovpn_sid_locator->prefix.prefix;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi)) {
srv6_locator_free(bgp_vrf->vpn_policy[AFI_IP6]
.tovpn_sid_locator);
bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid_locator =
NULL;
}
}
/* refresh per-vrf tovpn_sid_locator */
tovpn_sid_locator = bgp_vrf->tovpn_sid_locator;
if (tovpn_sid_locator) {
tmp_prefi.family = AF_INET6;
tmp_prefi.prefixlen = IPV6_MAX_BITLEN;
tmp_prefi.prefix = tovpn_sid_locator->prefix.prefix;
if (prefix_match((struct prefix *)&loc.prefix,
(struct prefix *)&tmp_prefi)) {
srv6_locator_free(bgp_vrf->tovpn_sid_locator);
bgp_vrf->tovpn_sid_locator = NULL;
}
}
}
return 0;
}
static zclient_handler *const bgp_handlers[] = {
[ZEBRA_ROUTER_ID_UPDATE] = bgp_router_id_update,
[ZEBRA_INTERFACE_ADDRESS_ADD] = bgp_interface_address_add,
[ZEBRA_INTERFACE_ADDRESS_DELETE] = bgp_interface_address_delete,
[ZEBRA_INTERFACE_NBR_ADDRESS_ADD] = bgp_interface_nbr_address_add,
[ZEBRA_INTERFACE_NBR_ADDRESS_DELETE] = bgp_interface_nbr_address_delete,
[ZEBRA_REDISTRIBUTE_ROUTE_ADD] = zebra_read_route,
[ZEBRA_REDISTRIBUTE_ROUTE_DEL] = zebra_read_route,
[ZEBRA_FEC_UPDATE] = bgp_read_fec_update,
[ZEBRA_LOCAL_ES_ADD] = bgp_zebra_process_local_es_add,
[ZEBRA_LOCAL_ES_DEL] = bgp_zebra_process_local_es_del,
[ZEBRA_VNI_ADD] = bgp_zebra_process_local_vni,
[ZEBRA_LOCAL_ES_EVI_ADD] = bgp_zebra_process_local_es_evi,
[ZEBRA_LOCAL_ES_EVI_DEL] = bgp_zebra_process_local_es_evi,
[ZEBRA_VNI_DEL] = bgp_zebra_process_local_vni,
[ZEBRA_MACIP_ADD] = bgp_zebra_process_local_macip,
[ZEBRA_MACIP_DEL] = bgp_zebra_process_local_macip,
[ZEBRA_L3VNI_ADD] = bgp_zebra_process_local_l3vni,
[ZEBRA_L3VNI_DEL] = bgp_zebra_process_local_l3vni,
[ZEBRA_IP_PREFIX_ROUTE_ADD] = bgp_zebra_process_local_ip_prefix,
[ZEBRA_IP_PREFIX_ROUTE_DEL] = bgp_zebra_process_local_ip_prefix,
[ZEBRA_RULE_NOTIFY_OWNER] = rule_notify_owner,
[ZEBRA_IPSET_NOTIFY_OWNER] = ipset_notify_owner,
[ZEBRA_IPSET_ENTRY_NOTIFY_OWNER] = ipset_entry_notify_owner,
[ZEBRA_IPTABLE_NOTIFY_OWNER] = iptable_notify_owner,
[ZEBRA_ROUTE_NOTIFY_OWNER] = bgp_zebra_route_notify_owner,
[ZEBRA_SRV6_LOCATOR_ADD] = bgp_zebra_process_srv6_locator_add,
[ZEBRA_SRV6_LOCATOR_DELETE] = bgp_zebra_process_srv6_locator_delete,
[ZEBRA_SRV6_MANAGER_GET_LOCATOR_CHUNK] =
bgp_zebra_process_srv6_locator_chunk,
[ZEBRA_SRV6_SID_NOTIFY] = bgp_zebra_srv6_sid_notify,
};
static int bgp_if_new_hook(struct interface *ifp)
{
struct bgp_interface *iifp;
if (ifp->info)
return 0;
iifp = XCALLOC(MTYPE_BGP_IF_INFO, sizeof(struct bgp_interface));
ifp->info = iifp;
return 0;
}
static int bgp_if_delete_hook(struct interface *ifp)
{
XFREE(MTYPE_BGP_IF_INFO, ifp->info);
return 0;
}
void bgp_if_init(void)
{
/* Initialize Zebra interface data structure. */
hook_register_prio(if_add, 0, bgp_if_new_hook);
hook_register_prio(if_del, 0, bgp_if_delete_hook);
}
static bool bgp_zebra_label_manager_ready(void)
{
return (zclient_sync->sock > 0);
}
static void bgp_start_label_manager(struct event *start)
{
if (!bgp_zebra_label_manager_ready() &&
!bgp_zebra_label_manager_connect())
event_add_timer(bm->master, bgp_start_label_manager, NULL, 1,
&bm->t_bgp_start_label_manager);
}
static bool bgp_zebra_label_manager_connect(void)
{
/* Connect to label manager. */
if (zclient_socket_connect(zclient_sync) < 0) {
zlog_warn("%s: failed connecting synchronous zclient!",
__func__);
return false;
}
/* make socket non-blocking */
set_nonblocking(zclient_sync->sock);
/* Send hello to notify zebra this is a synchronous client */
if (zclient_send_hello(zclient_sync) == ZCLIENT_SEND_FAILURE) {
zlog_warn("%s: failed sending hello for synchronous zclient!",
__func__);
close(zclient_sync->sock);
zclient_sync->sock = -1;
return false;
}
/* Connect to label manager */
if (lm_label_manager_connect(zclient_sync, 0) != 0) {
zlog_warn("%s: failed connecting to label manager!", __func__);
if (zclient_sync->sock > 0) {
close(zclient_sync->sock);
zclient_sync->sock = -1;
}
return false;
}
/* tell label pool that zebra is connected */
bgp_lp_event_zebra_up();
/* tell BGP L3VPN that label manager is available */
if (bgp_get_default())
vpn_leak_postchange_all();
return true;
}
static void bgp_zebra_capabilities(struct zclient_capabilities *cap)
{
bm->v6_with_v4_nexthops = cap->v6_with_v4_nexthop;
}
void bgp_zebra_init(struct event_loop *master, unsigned short instance)
{
zclient_num_connects = 0;
hook_register_prio(if_real, 0, bgp_ifp_create);
hook_register_prio(if_up, 0, bgp_ifp_up);
hook_register_prio(if_down, 0, bgp_ifp_down);
hook_register_prio(if_unreal, 0, bgp_ifp_destroy);
/* Set default values. */
zclient = zclient_new(master, &zclient_options_default, bgp_handlers,
array_size(bgp_handlers));
zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
zclient->zebra_buffer_write_ready = bgp_zebra_buffer_write_ready;
zclient->zebra_connected = bgp_zebra_connected;
zclient->zebra_capabilities = bgp_zebra_capabilities;
zclient->nexthop_update = bgp_nexthop_update;
zclient->instance = instance;
/* Initialize special zclient for synchronous message exchanges. */
zclient_sync = zclient_new(master, &zclient_options_sync, NULL, 0);
zclient_sync->sock = -1;
zclient_sync->redist_default = ZEBRA_ROUTE_BGP;
zclient_sync->instance = instance;
zclient_sync->session_id = 1;
zclient_sync->privs = &bgpd_privs;
if (!bgp_zebra_label_manager_ready())
event_add_timer(master, bgp_start_label_manager, NULL, 1,
&bm->t_bgp_start_label_manager);
}
void bgp_zebra_destroy(void)
{
if (zclient == NULL)
return;
zclient_stop(zclient);
zclient_free(zclient);
zclient = NULL;
if (zclient_sync == NULL)
return;
zclient_stop(zclient_sync);
zclient_free(zclient_sync);
zclient_sync = NULL;
}
int bgp_zebra_num_connects(void)
{
return zclient_num_connects;
}
void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
struct bgp_pbr_rule *pbr,
bool install)
{
struct stream *s;
if (pbra->install_in_progress && !pbr)
return;
if (pbr && pbr->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA)) {
if (pbr)
zlog_debug("%s: table %d (ip rule) %d", __func__,
pbra->table_id, install);
else
zlog_debug("%s: table %d fwmark %d %d", __func__,
pbra->table_id, pbra->fwmark, install);
}
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
VRF_DEFAULT);
bgp_encode_pbr_rule_action(s, pbra, pbr);
if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE)
&& install) {
if (!pbr)
pbra->install_in_progress = true;
else
pbr->install_in_progress = true;
}
}
void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
{
struct stream *s;
if (pbrim->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s type %d %d, ID %u", __func__,
pbrim->ipset_name, pbrim->type, install,
pbrim->unique);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPSET_CREATE :
ZEBRA_IPSET_DESTROY,
VRF_DEFAULT);
stream_putl(s, 1); /* send one pbr action */
bgp_encode_pbr_ipset_match(s, pbrim);
stream_putw_at(s, 0, stream_get_endp(s));
if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
pbrim->install_in_progress = true;
}
void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
bool install)
{
struct stream *s;
if (pbrime->install_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s %d %d, ID %u", __func__,
pbrime->backpointer->ipset_name, pbrime->unique,
install, pbrime->unique);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPSET_ENTRY_ADD :
ZEBRA_IPSET_ENTRY_DELETE,
VRF_DEFAULT);
stream_putl(s, 1); /* send one pbr action */
bgp_encode_pbr_ipset_entry_match(s, pbrime);
stream_putw_at(s, 0, stream_get_endp(s));
if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
pbrime->install_in_progress = true;
}
static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s,
uint8_t family)
{
struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
struct bgp_pbr_interface_head *head;
struct bgp_pbr_interface *pbr_if;
struct interface *ifp;
if (!bgp_pbr_cfg)
return;
if (family == AF_INET)
head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
else
head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
if (ifp)
stream_putl(s, ifp->ifindex);
}
}
static int bgp_pbr_get_ifnumber(struct bgp *bgp, uint8_t family)
{
struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
struct bgp_pbr_interface_head *head;
struct bgp_pbr_interface *pbr_if;
int cnt = 0;
if (!bgp_pbr_cfg)
return 0;
if (family == AF_INET)
head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
else
head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
cnt++;
}
return cnt;
}
void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
struct bgp_pbr_match *pbm,
bool install)
{
struct stream *s;
int ret = 0;
int nb_interface;
if (pbm->install_iptable_in_progress)
return;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: name %s type %d mark %d %d, ID %u", __func__,
pbm->ipset_name, pbm->type, pba->fwmark, install,
pbm->unique2);
s = zclient->obuf;
stream_reset(s);
zclient_create_header(s,
install ? ZEBRA_IPTABLE_ADD :
ZEBRA_IPTABLE_DELETE,
VRF_DEFAULT);
bgp_encode_pbr_iptable_match(s, pba, pbm);
nb_interface = bgp_pbr_get_ifnumber(pba->bgp, pbm->family);
stream_putl(s, nb_interface);
if (nb_interface)
bgp_encode_pbr_interface_list(pba->bgp, s, pbm->family);
stream_putw_at(s, 0, stream_get_endp(s));
ret = zclient_send_message(zclient);
if (install) {
if (ret != ZCLIENT_SEND_FAILURE)
pba->refcnt++;
else
pbm->install_iptable_in_progress = true;
}
}
/* inject in table <table_id> a default route to:
* - if nexthop IP is present : to this nexthop
* - if vrf is different from local : to the matching VRF
*/
void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
afi_t afi, uint32_t table_id, bool announce)
{
struct zapi_nexthop *api_nh;
struct zapi_route api;
struct prefix p;
if (!nh || (nh->type != NEXTHOP_TYPE_IPV4
&& nh->type != NEXTHOP_TYPE_IPV6)
|| nh->vrf_id == VRF_UNKNOWN)
return;
/* in vrf-lite, no default route has to be announced
* the table id of vrf is directly used to divert traffic
*/
if (!vrf_is_backend_netns() && bgp->vrf_id != nh->vrf_id)
return;
memset(&p, 0, sizeof(p));
if (afi != AFI_IP && afi != AFI_IP6)
return;
p.family = afi2family(afi);
memset(&api, 0, sizeof(api));
api.vrf_id = bgp->vrf_id;
api.type = ZEBRA_ROUTE_BGP;
api.safi = SAFI_UNICAST;
api.prefix = p;
api.tableid = table_id;
api.nexthop_num = 1;
SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
api_nh = &api.nexthops[0];
api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
api_nh->vrf_id = nh->vrf_id;
if (BGP_DEBUG(zebra, ZEBRA)) {
struct vrf *vrf;
vrf = vrf_lookup_by_id(nh->vrf_id);
zlog_debug("%s: %s default route to %pNHvv(%s) table %d",
bgp->name_pretty, announce ? "adding" : "withdrawing",
nh, VRF_LOGNAME(vrf), table_id);
}
/* redirect IP */
if (afi == AFI_IP && nh->gate.ipv4.s_addr != INADDR_ANY) {
api_nh->gate.ipv4 = nh->gate.ipv4;
api_nh->type = NEXTHOP_TYPE_IPV4;
} else if (afi == AFI_IP6 && memcmp(&nh->gate.ipv6, &in6addr_any,
sizeof(struct in6_addr))) {
memcpy(&api_nh->gate.ipv6, &nh->gate.ipv6,
sizeof(struct in6_addr));
api_nh->type = NEXTHOP_TYPE_IPV6;
} else if (nh->vrf_id != bgp->vrf_id) {
struct vrf *vrf;
struct interface *ifp;
vrf = vrf_lookup_by_id(nh->vrf_id);
if (!vrf)
return;
/* create default route with interface <VRF>
* with nexthop-vrf <VRF>
*/
ifp = if_lookup_by_name_vrf(vrf->name, vrf);
if (!ifp)
return;
api_nh->type = NEXTHOP_TYPE_IFINDEX;
api_nh->ifindex = ifp->ifindex;
}
zclient_route_send(announce ? ZEBRA_ROUTE_ADD : ZEBRA_ROUTE_DELETE,
zclient, &api);
}
/* Send capabilities to RIB */
int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
{
struct zapi_cap api;
int ret = BGP_GR_SUCCESS;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: Sending %sable for %s", __func__,
disable ? "dis" : "en", bgp->name_pretty);
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s zclient invalid", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s client not connected", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s(%d): Sending GR capability %s to zebra",
bgp->name_pretty, bgp->vrf_id,
disable ? "disabled" : "enabled");
/* Check if capability is already sent. If the flag force is set
* send the capability since this can be initial bgp configuration
*/
memset(&api, 0, sizeof(api));
if (disable) {
api.cap = ZEBRA_CLIENT_GR_DISABLE;
api.vrf_id = bgp->vrf_id;
} else {
api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
api.stale_removal_time = bgp->rib_stale_time;
api.vrf_id = bgp->vrf_id;
}
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
== ZCLIENT_SEND_FAILURE) {
zlog_err("%s(%d): Error sending GR capability to zebra",
bgp->name_pretty, bgp->vrf_id);
ret = BGP_GR_FAILURE;
} else {
if (disable)
bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
else
bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
ret = BGP_GR_SUCCESS;
}
return ret;
}
/* Send route update pesding or completed status to RIB for the
* specific AFI, SAFI
*/
int bgp_zebra_update(struct bgp *bgp, afi_t afi, safi_t safi,
enum zserv_client_capabilities type)
{
struct zapi_cap api = {0};
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s afi: %u safi: %u Command %s", __func__,
bgp->name_pretty, afi, safi,
zserv_gr_client_cap_string(type));
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s zclient == NULL, invalid", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s client not connected", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
api.afi = afi;
api.safi = safi;
api.vrf_id = bgp->vrf_id;
api.cap = type;
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
== ZCLIENT_SEND_FAILURE) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s error sending capability", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
return BGP_GR_SUCCESS;
}
/* Send RIB stale timer update */
int bgp_zebra_stale_timer_update(struct bgp *bgp)
{
struct zapi_cap api;
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s Timer Update to %u", __func__,
bgp->name_pretty, bgp->rib_stale_time);
if (zclient == NULL) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("zclient invalid");
return BGP_GR_FAILURE;
}
/* Check if the client is connected */
if ((zclient->sock < 0) || (zclient->t_connect)) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s client not connected", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
memset(&api, 0, sizeof(api));
api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
api.stale_removal_time = bgp->rib_stale_time;
api.vrf_id = bgp->vrf_id;
if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
== ZCLIENT_SEND_FAILURE) {
if (BGP_DEBUG(zebra, ZEBRA))
zlog_debug("%s: %s error sending capability", __func__,
bgp->name_pretty);
return BGP_GR_FAILURE;
}
return BGP_GR_SUCCESS;
}
int bgp_zebra_srv6_manager_get_locator_chunk(const char *name)
{
return srv6_manager_get_locator_chunk(zclient, name);
}
int bgp_zebra_srv6_manager_release_locator_chunk(const char *name)
{
return srv6_manager_release_locator_chunk(zclient, name);
}
/**
* Ask the SRv6 Manager (zebra) about a specific locator
*
* @param name Locator name
* @return 0 on success, -1 otherwise
*/
int bgp_zebra_srv6_manager_get_locator(const char *name)
{
if (!name)
return -1;
/*
* Send the Get Locator request to the SRv6 Manager and return the
* result
*/
return srv6_manager_get_locator(zclient, name);
}
/**
* Ask the SRv6 Manager (zebra) to allocate a SID.
*
* Optionally, it is possible to provide an IPv6 address (sid_value parameter).
*
* When sid_value is provided, the SRv6 Manager allocates the requested SID
* address, if the request can be satisfied (explicit allocation).
*
* When sid_value is not provided, the SRv6 Manager allocates any available SID
* from the provided locator (dynamic allocation).
*
* @param ctx Context to be associated with the request SID
* @param sid_value IPv6 address to be associated with the requested SID (optional)
* @param locator_name Name of the locator from which the SID must be allocated
* @param sid_func SID Function allocated by the SRv6 Manager.
*/
bool bgp_zebra_request_srv6_sid(const struct srv6_sid_ctx *ctx,
struct in6_addr *sid_value,
const char *locator_name, uint32_t *sid_func)
{
int ret;
if (!ctx || !locator_name)
return false;
/*
* Send the Get SRv6 SID request to the SRv6 Manager and check the
* result
*/
ret = srv6_manager_get_sid(zclient, ctx, sid_value, locator_name,
sid_func);
if (ret < 0) {
zlog_warn("%s: error getting SRv6 SID!", __func__);
return false;
}
return true;
}
/**
* Ask the SRv6 Manager (zebra) to release a previously allocated SID.
*
* This function is used to tell the SRv6 Manager that BGP no longer intends
* to use the SID.
*
* @param ctx Context to be associated with the SID to be released
*/
void bgp_zebra_release_srv6_sid(const struct srv6_sid_ctx *ctx)
{
int ret;
if (!ctx)
return;
/*
* Send the Release SRv6 SID request to the SRv6 Manager and check the
* result
*/
ret = srv6_manager_release_sid(zclient, ctx);
if (ret < 0) {
zlog_warn("%s: error releasing SRv6 SID!", __func__);
return;
}
}
void bgp_zebra_send_nexthop_label(int cmd, mpls_label_t label,
ifindex_t ifindex, vrf_id_t vrf_id,
enum lsp_types_t ltype, struct prefix *p,
uint8_t num_labels, mpls_label_t out_labels[])
{
struct zapi_labels zl = {};
struct zapi_nexthop *znh;
int i = 0;
zl.type = ltype;
zl.local_label = label;
zl.nexthop_num = 1;
znh = &zl.nexthops[0];
if (p->family == AF_INET)
IPV4_ADDR_COPY(&znh->gate.ipv4, &p->u.prefix4);
else
IPV6_ADDR_COPY(&znh->gate.ipv6, &p->u.prefix6);
if (ifindex == IFINDEX_INTERNAL)
znh->type = (p->family == AF_INET) ? NEXTHOP_TYPE_IPV4
: NEXTHOP_TYPE_IPV6;
else
znh->type = (p->family == AF_INET) ? NEXTHOP_TYPE_IPV4_IFINDEX
: NEXTHOP_TYPE_IPV6_IFINDEX;
znh->ifindex = ifindex;
znh->vrf_id = vrf_id;
if (num_labels == 0)
znh->label_num = 0;
else {
if (num_labels > MPLS_MAX_LABELS)
znh->label_num = MPLS_MAX_LABELS;
else
znh->label_num = num_labels;
for (i = 0; i < znh->label_num; i++)
znh->labels[i] = out_labels[i];
}
/* vrf_id is DEFAULT_VRF */
zebra_send_mpls_labels(zclient, cmd, &zl);
}
bool bgp_zebra_request_label_range(uint32_t base, uint32_t chunk_size,
bool label_auto)
{
int ret;
uint32_t start, end;
if (!zclient_sync || !bgp_zebra_label_manager_ready())
return false;
ret = lm_get_label_chunk(zclient_sync, 0, base, chunk_size, &start,
&end);
if (ret < 0) {
zlog_warn("%s: error getting label range!", __func__);
return false;
}
if (start > end || start < MPLS_LABEL_UNRESERVED_MIN ||
end > MPLS_LABEL_UNRESERVED_MAX) {
flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
__func__, start, end);
return false;
}
if (label_auto)
/* label automatic is serviced by the bgp label pool
* manager, which allocates label chunks in
* pre-pools, and which needs to be notified about
* new chunks availability
*/
bgp_lp_event_chunk(start, end);
return true;
}
void bgp_zebra_release_label_range(uint32_t start, uint32_t end)
{
int ret;
if (!zclient_sync || !bgp_zebra_label_manager_ready())
return;
ret = lm_release_label_chunk(zclient_sync, start, end);
if (ret < 0)
zlog_warn("%s: error releasing label range!", __func__);
}