frr/lib/command_match.c

547 lines
15 KiB
C
Raw Normal View History

#include "command_match.h"
#include "command_parse.h"
#include <zebra.h>
#include "memory.h"
/* matcher helper prototypes */
static int
add_nexthops(struct list *, struct graph_node *);
static struct list *
match_build_argv_r (struct graph_node *, vector, unsigned int);
static int
score_precedence (struct graph_node *);
/* token matcher prototypes */
static enum match_type
match_ipv4 (const char *);
static enum match_type
match_ipv4_prefix (const char *);
static enum match_type
match_ipv6 (const char *);
static enum match_type
match_ipv6_prefix (const char *);
static enum match_type
match_range (struct graph_node *, const char *str);
static enum match_type
match_word (struct graph_node *, enum filter_type, const char *);
static enum match_type
match_number (struct graph_node *, const char *);
static enum match_type
match_variable (struct graph_node *, const char *);
static enum match_type
match_token (struct graph_node *, char *, enum filter_type);
/* matching functions */
struct cmd_element *
match_command (struct graph_node *start, const char *line, enum filter_type filter)
{
// get all possible completions
struct list *completions = match_command_complete (start, line, filter);
// one of them should be END_GN if this command matches
struct graph_node *gn;
struct listnode *node;
for (ALL_LIST_ELEMENTS_RO(completions,node,gn))
{
if (gn->type == END_GN)
break;
gn = NULL;
}
return gn ? gn->element : NULL;
}
struct list *
match_command_complete (struct graph_node *start, const char *line, enum filter_type filter)
{
// vectorize command line
vector vline = cmd_make_strvec (line);
// pointer to next input token to match
char *token;
struct list *current = list_new(), // current nodes to match input token against
*matched = list_new(), // current nodes that match the input token
*next = list_new(); // possible next hops to current input token
// pointers used for iterating lists
struct graph_node *gn;
struct listnode *node;
// add all children of start node to list
add_nexthops(next, start);
unsigned int idx;
for (idx = 0; idx < vector_active(vline) && next->count > 0; idx++)
{
list_free (current);
current = next;
next = list_new();
token = vector_slot(vline, idx);
list_delete_all_node(matched);
for (ALL_LIST_ELEMENTS_RO(current,node,gn))
{
if (match_token(gn, token, filter) == exact_match) {
listnode_add(matched, gn);
add_nexthops(next, gn);
}
}
}
/* Variable summary
* -----------------------------------------------------------------
* token = last input token processed
* idx = index in `command` of last token processed
* current = set of all transitions from the previous input token
* matched = set of all nodes reachable with current input
* next = set of all nodes reachable from all nodes in `matched`
*/
list_free (current);
list_free (matched);
cmd_free_strvec(vline);
return next;
}
/**
* Adds all children that are reachable by one parser hop
* to the given list. NUL_GN, SELECTOR_GN, and OPTION_GN
* nodes are treated as transparent.
*
* @param[out] l the list to add the children to
* @param[in] node the node to get the children of
* @return the number of children added to the list
*/
static int
add_nexthops(struct list *l, struct graph_node *node)
{
int added = 0;
struct graph_node *child;
for (unsigned int i = 0; i < vector_active(node->children); i++)
{
child = vector_slot(node->children, i);
switch (child->type) {
case OPTION_GN:
case SELECTOR_GN:
case NUL_GN:
added += add_nexthops(l, child);
break;
default:
listnode_add(l, child);
added++;
}
}
return added;
}
struct list *
match_build_argv (const char *line, struct cmd_element *element)
{
struct list *argv = NULL;
// parse command
struct graph_node *start = new_node(NUL_GN);
parse_command_format(start, element);
vector vline = cmd_make_strvec (line);
for (unsigned int i = 0; i < vector_active(start->children); i++)
{
// call recursive builder on each starting child
argv = match_build_argv_r (vector_slot(start->children, i), vline, 0);
// if any of them succeed, return their argv
// since all command DFA's must begin with a word and these are deduplicated,
// no need to check precedence
if (argv) break;
}
return argv;
}
/**
* Builds an argument list given a DFA and a matching input line.
* This function should be passed the start node of the DFA, a matching
* input line, and the index of the first input token in the input line.
*
* First the function determines if the node it is passed matches the
* first token of input. If it does not, it returns NULL. If it does
* match, then it saves the input token as the head of an argument list.
*
* The next step is to see if there is further input in the input line.
* If there is not, the current node's children are searched to see if
* any of them are leaves (type END_GN). If this is the case, then the
* bottom of the recursion stack has been reached, and the argument list
* (with one node) is returned. If it is not the case, NULL is returned,
* indicating that there is no match for the input along this path.
*
* If there is further input, then the function recurses on each of the
* current node's children, passing them the input line minus the token
* that was just matched. For each child, the return value of the recursive
* call is inspected. If it is null, then there is no match for the input along
* the subgraph headed by that child. If it is not null, then there is at least
* one input match in that subgraph (more on this in a moment).
*
* If a recursive call on a child returns a non-null value, then it has matched
* the input given it on the subgraph that starts with that child. However, due
* to the flexibility of the grammar, it is sometimes the case that two or more
* child graphs match the same input (two or more of the recursive calls have
* non-NULL return values). This is not a valid state, since only one
* true match is possible. In order to resolve this conflict, the function
* keeps a reference to the child node that most specifically matches the
* input. This is done by assigning each node type a precedence. If a child is
* found to match the remaining input, then the precedence values of the
* current best-matching child and this new match are compared. The node with
* higher precedence is kept, and the other match is discarded. Due to the
* recursive nature of this function, it is only necessary to compare the
* precedence of immediate children, since all subsequent children will already
* have been disambiguated in this way.
*
* In the event that two children are found to match with the same precedence,
* then this command is totally ambiguous (how did you even match it in the first
* place?) and NULL is returned.
*
* The ultimate return value is an ordered linked list of nodes that comprise
* the best match for the command, each with their `arg` fields pointing to the
* matching token string.
*
* @param[out] start the start node.
* @param[in] vline the vectorized input line.
* @param[in] n the index of the first input token. Should be 0 for external
* callers.
*/
static struct list *
match_build_argv_r (struct graph_node *start, vector vline, unsigned int n)
{
// if we don't match this node, die
if (match_token(start, vector_slot(vline, n), FILTER_STRICT) != exact_match)
return NULL;
// arg list for this subgraph
struct list *argv = list_new();
// pointers for iterating linklist
struct graph_node *gn;
struct listnode *ln;
// append current arg
listnode_add(argv, start);
// get all possible nexthops
struct list *next = list_new();
add_nexthops(next, start);
// if we're at the end of input, need END_GN or no match
if (n+1 == vector_active (vline)) {
for (ALL_LIST_ELEMENTS_RO(next,ln,gn)) {
if (gn->type == END_GN) {
list_delete (next);
start->arg = XSTRDUP(MTYPE_CMD_TOKENS, vector_slot(vline, n));
if (start->type == VARIABLE_GN)
fprintf(stderr, "Setting variable %s->arg with text %s\n", start->text, start->arg);
return argv;
}
}
list_free (next);
return NULL;
}
// otherwise recurse on all nexthops
struct list *bestmatch = NULL;
for (ALL_LIST_ELEMENTS_RO(next,ln,gn))
{
if (gn->type == END_GN) // skip END_GN since we aren't at end of input
continue;
// get the result of the next node
for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t");
fprintf(stderr, "Recursing on node %s for token %s\n", gn->text, (char*) vector_slot(vline, n+1));
struct list *result = match_build_argv_r (gn, vline, n+1);
// compare to our current best match, and save if it's better
if (result) {
if (bestmatch) {
int currprec = score_precedence (listgetdata(listhead(bestmatch)));
int rsltprec = score_precedence (gn);
if (currprec < rsltprec)
list_delete (result);
if (currprec > rsltprec) {
for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t");
fprintf(stderr, ">> Overwriting bestmatch with: %s\n", gn->text);
list_delete (bestmatch);
bestmatch = result;
}
if (currprec == rsltprec) {
fprintf(stderr, ">> Ambiguous match. Abort.\n");
list_delete (bestmatch);
list_delete (result);
list_delete (argv);
return NULL;
}
}
else {
bestmatch = result;
for (unsigned int i = 0; i < n; i++) fprintf(stderr, "\t");
fprintf(stderr, ">> Setting bestmatch with: %s\n", gn->text);
}
}
}
if (bestmatch) {
list_add_list(argv, bestmatch);
list_delete (bestmatch);
start->arg = XSTRDUP(MTYPE_CMD_TOKENS, vector_slot(vline, n));
if (start->type == VARIABLE_GN)
fprintf(stderr, "Setting variable %s->arg with text %s\n", start->text, start->arg);
return argv;
}
else {
list_delete (argv);
return NULL;
}
}
/* matching utility functions */
static int
score_precedence (struct graph_node *node)
{
switch (node->type)
{
// these should be mutually exclusive
case IPV4_GN:
case IPV4_PREFIX_GN:
case IPV6_GN:
case IPV6_PREFIX_GN:
case RANGE_GN:
case NUMBER_GN:
return 1;
case WORD_GN:
return 2;
case VARIABLE_GN:
return 3;
default:
return 10;
}
}
static enum match_type
match_token (struct graph_node *node, char *token, enum filter_type filter)
{
switch (node->type) {
case WORD_GN:
return match_word (node, filter, token);
case IPV4_GN:
return match_ipv4 (token);
case IPV4_PREFIX_GN:
return match_ipv4_prefix (token);
case IPV6_GN:
return match_ipv6 (token);
case IPV6_PREFIX_GN:
return match_ipv6_prefix (token);
case RANGE_GN:
return match_range (node, token);
case NUMBER_GN:
return match_number (node, token);
case VARIABLE_GN:
return match_variable (node, token);
case END_GN:
default:
return no_match;
}
}
#define IPV4_ADDR_STR "0123456789."
#define IPV4_PREFIX_STR "0123456789./"
static enum match_type
match_ipv4 (const char *str)
{
struct sockaddr_in sin_dummy;
if (str == NULL)
return partly_match;
if (strspn (str, IPV4_ADDR_STR) != strlen (str))
return no_match;
if (inet_pton(AF_INET, str, &sin_dummy.sin_addr) != 1)
return no_match;
return exact_match;
}
static enum match_type
match_ipv4_prefix (const char *str)
{
struct sockaddr_in sin_dummy;
const char *delim = "/\0";
char *dupe, *prefix, *mask, *context, *endptr;
int nmask = -1;
if (str == NULL)
return partly_match;
if (strspn (str, IPV4_PREFIX_STR) != strlen (str))
return no_match;
/* tokenize to address + mask */
dupe = XMALLOC(MTYPE_TMP, strlen(str)+1);
strncpy(dupe, str, strlen(str)+1);
prefix = strtok_r(dupe, delim, &context);
mask = strtok_r(NULL, delim, &context);
if (!mask)
return partly_match;
/* validate prefix */
if (inet_pton(AF_INET, prefix, &sin_dummy.sin_addr) != 1)
return no_match;
/* validate mask */
nmask = strtol (mask, &endptr, 10);
if (*endptr != '\0' || nmask < 0 || nmask > 32)
return no_match;
XFREE(MTYPE_TMP, dupe);
return exact_match;
}
#ifdef HAVE_IPV6
#define IPV6_ADDR_STR "0123456789abcdefABCDEF:."
#define IPV6_PREFIX_STR "0123456789abcdefABCDEF:./"
static enum match_type
match_ipv6 (const char *str)
{
struct sockaddr_in6 sin6_dummy;
int ret;
if (str == NULL)
return partly_match;
if (strspn (str, IPV6_ADDR_STR) != strlen (str))
return no_match;
ret = inet_pton(AF_INET6, str, &sin6_dummy.sin6_addr);
if (ret == 1)
return exact_match;
return no_match;
}
static enum match_type
match_ipv6_prefix (const char *str)
{
struct sockaddr_in6 sin6_dummy;
const char *delim = "/\0";
char *dupe, *prefix, *mask, *context, *endptr;
int nmask = -1;
if (str == NULL)
return partly_match;
if (strspn (str, IPV6_PREFIX_STR) != strlen (str))
return no_match;
/* tokenize to address + mask */
dupe = XMALLOC(MTYPE_TMP, strlen(str)+1);
strncpy(dupe, str, strlen(str)+1);
prefix = strtok_r(dupe, delim, &context);
mask = strtok_r(NULL, delim, &context);
if (!mask)
return partly_match;
/* validate prefix */
if (inet_pton(AF_INET6, prefix, &sin6_dummy.sin6_addr) != 1)
return no_match;
/* validate mask */
nmask = strtol (mask, &endptr, 10);
if (*endptr != '\0' || nmask < 0 || nmask > 128)
return no_match;
XFREE(MTYPE_TMP, dupe);
return exact_match;
}
#endif
static enum match_type
match_range (struct graph_node *rangenode, const char *str)
{
char *endptr = NULL;
signed long val;
if (str == NULL)
return 1;
val = strtoll (str, &endptr, 10);
if (*endptr != '\0')
return 0;
val = llabs(val);
if (val < rangenode->min || val > rangenode->max)
return no_match;
else
return exact_match;
}
static enum match_type
match_word(struct graph_node *wordnode,
enum filter_type filter,
const char *word)
{
if (filter == FILTER_RELAXED)
{
if (!word || !strlen(word))
return partly_match;
else if (!strncmp(wordnode->text, word, strlen(word)))
return !strcmp(wordnode->text, word) ? exact_match : partly_match;
else
return no_match;
}
else
{
if (!word)
return no_match;
else
return !strcmp(wordnode->text, word) ? exact_match : no_match;
}
}
static enum match_type
match_number(struct graph_node *numnode, const char *word)
{
if (!strcmp("\0", word)) return no_match;
char *endptr;
long num = strtol(word, &endptr, 10);
if (endptr != '\0') return no_match;
return num == numnode->value ? exact_match : no_match;
}
#define VARIABLE_ALPHABET "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890"
static enum match_type
match_variable(struct graph_node *varnode, const char *word)
{
return strlen(word) == strspn(word, VARIABLE_ALPHABET) && isalpha(word[0]) ?
exact_match : no_match;
}