frr/zebra/rt_netlink.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4071 lines
104 KiB
C
Raw Normal View History

2002-12-13 21:15:29 +01:00
/* Kernel routing table updates using netlink over GNU/Linux system.
* Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
2002-12-13 21:15:29 +01:00
*/
#include <zebra.h>
#ifdef HAVE_NETLINK
#include <net/if_arp.h>
#include <linux/lwtunnel.h>
#include <linux/mpls_iptunnel.h>
#include <linux/neighbour.h>
#include <linux/rtnetlink.h>
#include <linux/nexthop.h>
2002-12-13 21:15:29 +01:00
/* Hack for GNU libc version 2. */
#ifndef MSG_TRUNC
#define MSG_TRUNC 0x20
#endif /* MSG_TRUNC */
#include "linklist.h"
#include "if.h"
#include "log.h"
#include "prefix.h"
#include "connected.h"
#include "table.h"
#include "memory.h"
#include "zebra_memory.h"
2002-12-13 21:15:29 +01:00
#include "rib.h"
From havanna_moon@gmx.net Fri Jan 17 23:37:49 2003 Date: Sat, 11 Jan 2003 23:26:28 +0100 (CET) From: Yon Uriarte <havanna_moon@gmx.net> To: "the list(tm) Zebra" <zebra@zebra.org> Subject: [zebra 17217] [PATCH] show thread CPU Hi, a little patch from the 'stupid preprocessor tricks' collection to record thread statistics. Usage: "show thread cpu [r][w][t][e][x]" Output Fields: self explaining I hope. Type is one of RWTEX for: Read, Write (fd threads), Timer, Event, Execute. Overhead vs. vanilla zebra: almost nothing. Vanilla CVS zebra already collects thread run times. Caveats: Under linux getrusage has a granularity of 10ms, which is almost useless in this case. Run ./configure, edit config.h and comment out "#define HAVE_RUSAGE", this way it will use getimeofday which has a much better granularity. IMHO this is better, as cooperative threads are effectively running during all that wall time (dont care if CPU utilization was 3% or 99% during the time the thread was running (an effective rusage combined with getimeofday could give that info)). Maybe someone can give tips for other platforms on API granularity. TODO: change some of the calls to thread_add_$KIND to funcname_thread_add_$KIND with a meaningfull funcname, so users will get a better idea of what's going on. F.ex. (AFAIK): ospf_spf_calculate_timer -> "Routes Step 1, areas SPF" ospf_ase_calculate_timer -> "Routes Step 2, externals" Could this be added to the unofficial patch collection? Could someone with BGP keepalive problems run their bgpd with this patch and post the results? TIA, HTH, HAND, regards yon Example output: -------------------------------- ospfd# show thread cpu Runtime(ms) Invoked Avg uSecs Max uSecs Type Thread 14.829 31 478 585 T ospf_ase_calculate_timer 82.132 9838 8 291 EX ospf_nsm_event 0.029 1 29 29 E ospf_default_originate_timer 0.254 9 28 34 T ospf_db_desc_timer 0.026 7 3 11 T ospf_wait_timer 669.015 523 1279 490696 R vty_read 4.415 45 98 173 TE ospf_network_lsa_refresh_timer 15.026 31 484 588 T ospf_spf_calculate_timer 29.478 1593 18 122 E ospf_ls_upd_send_queue_event 0.173 1 173 173 T vty_timeout 4.173 242 17 58 E ospf_ls_ack_send_event 637.767 121223 5 55 T ospf_ls_ack_timer 39.373 244 161 2691 R zclient_read 12.169 98 124 726 EX ospf_ism_event 0.226 2 113 125 R vty_accept 537.776 14256 37 3813 W ospf_write 4.967 41 121 250 T ospf_router_lsa_timer 0.672 1 672 672 E zclient_connect 7.901 1658 4 26 T ospf_ls_req_timer 0.459 2 229 266 E ospf_external_lsa_originate_timer 3.203 60 53 305 T ospf_maxage_lsa_remover 108.341 9772 11 65 T ospf_ls_upd_timer 33.302 525 63 8628 W vty_flush 0.101 1 101 101 T ospf_router_lsa_update_timer 0.016 1 16 16 T ospf_router_id_update_timer 26.970 407 66 176 T ospf_lsa_maxage_walker 381.949 12244 31 69 T ospf_hello_timer 0.114 22 5 14 T ospf_inactivity_timer 34.290 1223 28 310 T ospf_lsa_refresh_walker 470.645 6592 71 665 R ospf_read 3119.791 180693 17 490696 RWTEX TOTAL ospfd# bgpd# sh t c TeX Runtime(ms) Invoked Avg uSecs Max uSecs Type Thread 21.504 476 45 71 T bgp_keepalive_timer 17.784 1157 15 131 T bgp_reuse_timer 29.080 193 150 249 T bgp_scan 23.606 995 23 420 E bgp_event 317.734 28572 11 69 T bgp_routeadv_timer 0.084 1 84 84 E zlookup_connect 0.526 1 526 526 E zclient_connect 1.348 13 103 147 T bgp_start_timer 19.443 142 136 420 T bgp_connect_timer 16.032 772 20 27 T bgp_import 447.141 32322 13 526 TEX TOTAL bgpd# bgpd# show thread cpu rw Runtime(ms) Invoked Avg uSecs Max uSecs Type Thread 155.043 7 22149 150659 R bgp_accept 129.638 180 720 53844 R vty_read 1.734 56 30 129 R zclient_read 0.255 2 127 148 R vty_accept 58.483 983 59 340 R bgp_read 171.495 29190 5 245 W bgp_write 13.884 181 76 2542 W vty_flush 530.532 30599 17 150659 RW TOTAL bgpd# --------------------------------
2003-01-18 00:47:00 +01:00
#include "thread.h"
#include "privs.h"
#include "nexthop.h"
#include "vrf.h"
#include "vty.h"
#include "mpls.h"
#include "vxlan.h"
#include "printfrr.h"
2002-12-13 21:15:29 +01:00
#include "zebra/zapi_msg.h"
#include "zebra/zebra_ns.h"
#include "zebra/zebra_vrf.h"
#include "zebra/rt.h"
2002-12-13 21:15:29 +01:00
#include "zebra/redistribute.h"
#include "zebra/interface.h"
#include "zebra/debug.h"
#include "zebra/rtadv.h"
2016-05-09 05:11:18 +02:00
#include "zebra/zebra_ptm.h"
#include "zebra/zebra_mpls.h"
#include "zebra/kernel_netlink.h"
#include "zebra/rt_netlink.h"
#include "zebra/zebra_nhg.h"
#include "zebra/zebra_mroute.h"
#include "zebra/zebra_vxlan.h"
#include "zebra/zebra_errors.h"
#include "zebra/zebra_evpn_mh.h"
#ifndef AF_MPLS
#define AF_MPLS 28
#endif
/* Re-defining as I am unable to include <linux/if_bridge.h> which has the
* UAPI for MAC sync. */
#ifndef _UAPI_LINUX_IF_BRIDGE_H
/* FDB notification bits for NDA_NOTIFY:
* - BR_FDB_NFY_STATIC - notify on activity/expire even for a static entry
* - BR_FDB_NFY_INACTIVE - mark as inactive to avoid double notification,
* used with BR_FDB_NFY_STATIC (kernel controlled)
*/
enum {
BR_FDB_NFY_STATIC,
BR_FDB_NFY_INACTIVE,
BR_FDB_NFY_MAX
};
#endif
static vlanid_t filter_vlan = 0;
/* We capture whether the current kernel supports nexthop ids; by
* default, we'll use them if possible. There's also a configuration
* available to _disable_ use of kernel nexthops.
*/
static bool supports_nh;
struct gw_family_t {
uint16_t filler;
uint16_t family;
union g_addr gate;
};
static const char ipv4_ll_buf[16] = "169.254.0.1";
static struct in_addr ipv4_ll;
/* Is this a ipv4 over ipv6 route? */
static bool is_route_v4_over_v6(unsigned char rtm_family,
enum nexthop_types_t nexthop_type)
{
if (rtm_family == AF_INET
&& (nexthop_type == NEXTHOP_TYPE_IPV6
|| nexthop_type == NEXTHOP_TYPE_IPV6_IFINDEX))
return true;
return false;
}
/* Helper to control use of kernel-level nexthop ids */
static bool kernel_nexthops_supported(void)
{
return (supports_nh && !vrf_is_backend_netns()
&& zebra_nhg_kernel_nexthops_enabled());
}
/*
* Some people may only want to use NHGs created by protos and not
* implicitly created by Zebra. This check accounts for that.
*/
static bool proto_nexthops_only(void)
{
return zebra_nhg_proto_nexthops_only();
}
/* Is this a proto created NHG? */
static bool is_proto_nhg(uint32_t id, int type)
{
/* If type is available, use it as the source of truth */
if (type) {
if (type != ZEBRA_ROUTE_NHG)
return true;
return false;
}
if (id >= ZEBRA_NHG_PROTO_LOWER)
return true;
return false;
}
/*
* The ipv4_ll data structure is used for all 5549
* additions to the kernel. Let's figure out the
* correct value one time instead for every
* install/remove of a 5549 type route
*/
void rt_netlink_init(void)
{
inet_pton(AF_INET, ipv4_ll_buf, &ipv4_ll);
}
/*
* Mapping from dataplane neighbor flags to netlink flags
*/
static uint8_t neigh_flags_to_netlink(uint8_t dplane_flags)
{
uint8_t flags = 0;
if (dplane_flags & DPLANE_NTF_EXT_LEARNED)
flags |= NTF_EXT_LEARNED;
if (dplane_flags & DPLANE_NTF_ROUTER)
flags |= NTF_ROUTER;
if (dplane_flags & DPLANE_NTF_USE)
flags |= NTF_USE;
return flags;
}
/*
* Mapping from dataplane neighbor state to netlink state
*/
static uint16_t neigh_state_to_netlink(uint16_t dplane_state)
{
uint16_t state = 0;
if (dplane_state & DPLANE_NUD_REACHABLE)
state |= NUD_REACHABLE;
if (dplane_state & DPLANE_NUD_STALE)
state |= NUD_STALE;
if (dplane_state & DPLANE_NUD_NOARP)
state |= NUD_NOARP;
if (dplane_state & DPLANE_NUD_PROBE)
state |= NUD_PROBE;
if (dplane_state & DPLANE_NUD_INCOMPLETE)
state |= NUD_INCOMPLETE;
return state;
}
static inline bool is_selfroute(int proto)
{
if ((proto == RTPROT_BGP) || (proto == RTPROT_OSPF)
|| (proto == RTPROT_ZSTATIC) || (proto == RTPROT_ZEBRA)
|| (proto == RTPROT_ISIS) || (proto == RTPROT_RIPNG)
|| (proto == RTPROT_NHRP) || (proto == RTPROT_EIGRP)
|| (proto == RTPROT_LDP) || (proto == RTPROT_BABEL)
|| (proto == RTPROT_RIP) || (proto == RTPROT_SHARP)
|| (proto == RTPROT_PBR) || (proto == RTPROT_OPENFABRIC)
|| (proto == RTPROT_SRTE)) {
return true;
}
return false;
}
static inline int zebra2proto(int proto)
{
switch (proto) {
case ZEBRA_ROUTE_BABEL:
proto = RTPROT_BABEL;
break;
case ZEBRA_ROUTE_BGP:
proto = RTPROT_BGP;
break;
case ZEBRA_ROUTE_OSPF:
case ZEBRA_ROUTE_OSPF6:
proto = RTPROT_OSPF;
break;
case ZEBRA_ROUTE_STATIC:
proto = RTPROT_ZSTATIC;
break;
case ZEBRA_ROUTE_ISIS:
proto = RTPROT_ISIS;
break;
case ZEBRA_ROUTE_RIP:
proto = RTPROT_RIP;
break;
case ZEBRA_ROUTE_RIPNG:
proto = RTPROT_RIPNG;
break;
case ZEBRA_ROUTE_NHRP:
proto = RTPROT_NHRP;
break;
case ZEBRA_ROUTE_EIGRP:
proto = RTPROT_EIGRP;
break;
case ZEBRA_ROUTE_LDP:
proto = RTPROT_LDP;
break;
case ZEBRA_ROUTE_SHARP:
proto = RTPROT_SHARP;
break;
case ZEBRA_ROUTE_PBR:
proto = RTPROT_PBR;
break;
case ZEBRA_ROUTE_OPENFABRIC:
proto = RTPROT_OPENFABRIC;
break;
case ZEBRA_ROUTE_SRTE:
proto = RTPROT_SRTE;
break;
case ZEBRA_ROUTE_TABLE:
case ZEBRA_ROUTE_NHG:
proto = RTPROT_ZEBRA;
break;
default:
/*
* When a user adds a new protocol this will show up
* to let them know to do something about it. This
* is intentionally a warn because we should see
* this as part of development of a new protocol
*/
zlog_debug(
"%s: Please add this protocol(%d) to proper rt_netlink.c handling",
__func__, proto);
proto = RTPROT_ZEBRA;
break;
}
return proto;
}
static inline int proto2zebra(int proto, int family, bool is_nexthop)
{
switch (proto) {
case RTPROT_BABEL:
proto = ZEBRA_ROUTE_BABEL;
break;
case RTPROT_BGP:
proto = ZEBRA_ROUTE_BGP;
break;
case RTPROT_OSPF:
proto = (family == AFI_IP) ? ZEBRA_ROUTE_OSPF
: ZEBRA_ROUTE_OSPF6;
break;
case RTPROT_ISIS:
proto = ZEBRA_ROUTE_ISIS;
break;
case RTPROT_RIP:
proto = ZEBRA_ROUTE_RIP;
break;
case RTPROT_RIPNG:
proto = ZEBRA_ROUTE_RIPNG;
break;
case RTPROT_NHRP:
proto = ZEBRA_ROUTE_NHRP;
break;
case RTPROT_EIGRP:
proto = ZEBRA_ROUTE_EIGRP;
break;
case RTPROT_LDP:
proto = ZEBRA_ROUTE_LDP;
break;
case RTPROT_STATIC:
case RTPROT_ZSTATIC:
proto = ZEBRA_ROUTE_STATIC;
break;
case RTPROT_SHARP:
proto = ZEBRA_ROUTE_SHARP;
break;
case RTPROT_PBR:
proto = ZEBRA_ROUTE_PBR;
break;
case RTPROT_OPENFABRIC:
proto = ZEBRA_ROUTE_OPENFABRIC;
break;
case RTPROT_SRTE:
proto = ZEBRA_ROUTE_SRTE;
break;
case RTPROT_ZEBRA:
if (is_nexthop) {
proto = ZEBRA_ROUTE_NHG;
break;
}
/* Intentional fall thru */
default:
/*
* When a user adds a new protocol this will show up
* to let them know to do something about it. This
* is intentionally a warn because we should see
* this as part of development of a new protocol
*/
zlog_debug(
"%s: Please add this protocol(%d) to proper rt_netlink.c handling",
__func__, proto);
proto = ZEBRA_ROUTE_KERNEL;
break;
}
return proto;
}
/*
Pending: create an efficient table_id (in a tree/hash) based lookup)
*/
vrf_id_t vrf_lookup_by_table(uint32_t table_id, ns_id_t ns_id)
{
struct vrf *vrf;
struct zebra_vrf *zvrf;
RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
zvrf = vrf->info;
if (zvrf == NULL)
continue;
/* case vrf with netns : match the netnsid */
if (vrf_is_backend_netns()) {
if (ns_id == zvrf_id(zvrf))
return zvrf_id(zvrf);
} else {
/* VRF is VRF_BACKEND_VRF_LITE */
if (zvrf->table_id != table_id)
continue;
return zvrf_id(zvrf);
}
}
return VRF_DEFAULT;
}
/**
* @parse_encap_mpls() - Parses encapsulated mpls attributes
* @tb: Pointer to rtattr to look for nested items in.
* @labels: Pointer to store labels in.
*
* Return: Number of mpls labels found.
*/
static int parse_encap_mpls(struct rtattr *tb, mpls_label_t *labels)
{
struct rtattr *tb_encap[MPLS_IPTUNNEL_MAX + 1] = {0};
mpls_lse_t *lses = NULL;
int num_labels = 0;
uint32_t ttl = 0;
uint32_t bos = 0;
uint32_t exp = 0;
mpls_label_t label = 0;
netlink_parse_rtattr_nested(tb_encap, MPLS_IPTUNNEL_MAX, tb);
lses = (mpls_lse_t *)RTA_DATA(tb_encap[MPLS_IPTUNNEL_DST]);
while (!bos && num_labels < MPLS_MAX_LABELS) {
mpls_lse_decode(lses[num_labels], &label, &ttl, &exp, &bos);
labels[num_labels++] = label;
}
return num_labels;
}
static struct nexthop
parse_nexthop_unicast(ns_id_t ns_id, struct rtmsg *rtm, struct rtattr **tb,
enum blackhole_type bh_type, int index, void *prefsrc,
void *gate, afi_t afi, vrf_id_t vrf_id)
{
struct interface *ifp = NULL;
struct nexthop nh = {0};
mpls_label_t labels[MPLS_MAX_LABELS] = {0};
int num_labels = 0;
vrf_id_t nh_vrf_id = vrf_id;
size_t sz = (afi == AFI_IP) ? 4 : 16;
if (bh_type == BLACKHOLE_UNSPEC) {
if (index && !gate)
nh.type = NEXTHOP_TYPE_IFINDEX;
else if (index && gate)
nh.type = (afi == AFI_IP) ? NEXTHOP_TYPE_IPV4_IFINDEX
: NEXTHOP_TYPE_IPV6_IFINDEX;
else if (!index && gate)
nh.type = (afi == AFI_IP) ? NEXTHOP_TYPE_IPV4
: NEXTHOP_TYPE_IPV6;
else {
nh.type = NEXTHOP_TYPE_BLACKHOLE;
nh.bh_type = bh_type;
}
} else {
nh.type = NEXTHOP_TYPE_BLACKHOLE;
nh.bh_type = bh_type;
}
nh.ifindex = index;
if (prefsrc)
memcpy(&nh.src, prefsrc, sz);
if (gate)
memcpy(&nh.gate, gate, sz);
if (index) {
ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), index);
if (ifp)
nh_vrf_id = ifp->vrf_id;
}
nh.vrf_id = nh_vrf_id;
if (tb[RTA_ENCAP] && tb[RTA_ENCAP_TYPE]
&& *(uint16_t *)RTA_DATA(tb[RTA_ENCAP_TYPE])
== LWTUNNEL_ENCAP_MPLS) {
num_labels = parse_encap_mpls(tb[RTA_ENCAP], labels);
}
if (rtm->rtm_flags & RTNH_F_ONLINK)
SET_FLAG(nh.flags, NEXTHOP_FLAG_ONLINK);
if (num_labels)
nexthop_add_labels(&nh, ZEBRA_LSP_STATIC, num_labels, labels);
return nh;
}
static uint8_t parse_multipath_nexthops_unicast(ns_id_t ns_id,
struct nexthop_group *ng,
struct rtmsg *rtm,
struct rtnexthop *rtnh,
struct rtattr **tb,
void *prefsrc, vrf_id_t vrf_id)
{
void *gate = NULL;
struct interface *ifp = NULL;
int index = 0;
/* MPLS labels */
mpls_label_t labels[MPLS_MAX_LABELS] = {0};
int num_labels = 0;
struct rtattr *rtnh_tb[RTA_MAX + 1] = {};
int len = RTA_PAYLOAD(tb[RTA_MULTIPATH]);
vrf_id_t nh_vrf_id = vrf_id;
for (;;) {
struct nexthop *nh = NULL;
if (len < (int)sizeof(*rtnh) || rtnh->rtnh_len > len)
break;
index = rtnh->rtnh_ifindex;
if (index) {
/*
* Yes we are looking this up
* for every nexthop and just
* using the last one looked
* up right now
*/
ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
index);
if (ifp)
nh_vrf_id = ifp->vrf_id;
else {
flog_warn(
EC_ZEBRA_UNKNOWN_INTERFACE,
"%s: Unknown interface %u specified, defaulting to VRF_DEFAULT",
__func__, index);
nh_vrf_id = VRF_DEFAULT;
}
} else
nh_vrf_id = vrf_id;
if (rtnh->rtnh_len > sizeof(*rtnh)) {
memset(rtnh_tb, 0, sizeof(rtnh_tb));
netlink_parse_rtattr(rtnh_tb, RTA_MAX, RTNH_DATA(rtnh),
rtnh->rtnh_len - sizeof(*rtnh));
if (rtnh_tb[RTA_GATEWAY])
gate = RTA_DATA(rtnh_tb[RTA_GATEWAY]);
if (rtnh_tb[RTA_ENCAP] && rtnh_tb[RTA_ENCAP_TYPE]
&& *(uint16_t *)RTA_DATA(rtnh_tb[RTA_ENCAP_TYPE])
== LWTUNNEL_ENCAP_MPLS) {
num_labels = parse_encap_mpls(
rtnh_tb[RTA_ENCAP], labels);
}
}
if (gate && rtm->rtm_family == AF_INET) {
if (index)
nh = nexthop_from_ipv4_ifindex(
gate, prefsrc, index, nh_vrf_id);
else
nh = nexthop_from_ipv4(gate, prefsrc,
nh_vrf_id);
} else if (gate && rtm->rtm_family == AF_INET6) {
if (index)
nh = nexthop_from_ipv6_ifindex(
gate, index, nh_vrf_id);
else
nh = nexthop_from_ipv6(gate, nh_vrf_id);
} else
nh = nexthop_from_ifindex(index, nh_vrf_id);
if (nh) {
nh->weight = rtnh->rtnh_hops + 1;
if (num_labels)
nexthop_add_labels(nh, ZEBRA_LSP_STATIC,
num_labels, labels);
if (rtnh->rtnh_flags & RTNH_F_ONLINK)
SET_FLAG(nh->flags, NEXTHOP_FLAG_ONLINK);
/* Add to temporary list */
nexthop_group_add_sorted(ng, nh);
}
if (rtnh->rtnh_len == 0)
break;
len -= NLMSG_ALIGN(rtnh->rtnh_len);
rtnh = RTNH_NEXT(rtnh);
}
uint8_t nhop_num = nexthop_group_nexthop_num(ng);
return nhop_num;
}
2002-12-13 21:15:29 +01:00
/* Looking up routing table by netlink interface. */
static int netlink_route_change_read_unicast(struct nlmsghdr *h, ns_id_t ns_id,
int startup)
2002-12-13 21:15:29 +01:00
{
int len;
struct rtmsg *rtm;
struct rtattr *tb[RTA_MAX + 1];
uint32_t flags = 0;
struct prefix p;
struct prefix_ipv6 src_p = {};
vrf_id_t vrf_id;
bool selfroute;
char anyaddr[16] = {0};
int proto = ZEBRA_ROUTE_KERNEL;
int index = 0;
2002-12-13 21:15:29 +01:00
int table;
int metric = 0;
uint32_t mtu = 0;
uint8_t distance = 0;
route_tag_t tag = 0;
uint32_t nhe_id = 0;
void *dest = NULL;
void *gate = NULL;
void *prefsrc = NULL; /* IPv4 preferred source host address */
void *src = NULL; /* IPv6 srcdest source prefix */
enum blackhole_type bh_type = BLACKHOLE_UNSPEC;
2002-12-13 21:15:29 +01:00
rtm = NLMSG_DATA(h);
if (startup && h->nlmsg_type != RTM_NEWROUTE)
2002-12-13 21:15:29 +01:00
return 0;
switch (rtm->rtm_type) {
case RTN_UNICAST:
break;
case RTN_BLACKHOLE:
bh_type = BLACKHOLE_NULL;
break;
case RTN_UNREACHABLE:
bh_type = BLACKHOLE_REJECT;
break;
case RTN_PROHIBIT:
bh_type = BLACKHOLE_ADMINPROHIB;
break;
default:
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("Route rtm_type: %s(%d) intentionally ignoring",
nl_rttype_to_str(rtm->rtm_type),
rtm->rtm_type);
2002-12-13 21:15:29 +01:00
return 0;
}
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
if (len < 0) {
zlog_err(
"%s: Message received from netlink is of a broken size %d %zu",
__func__, h->nlmsg_len,
(size_t)NLMSG_LENGTH(sizeof(struct rtmsg)));
2002-12-13 21:15:29 +01:00
return -1;
}
memset(tb, 0, sizeof(tb));
2002-12-13 21:15:29 +01:00
netlink_parse_rtattr(tb, RTA_MAX, RTM_RTA(rtm), len);
2002-12-13 21:15:29 +01:00
if (rtm->rtm_flags & RTM_F_CLONED)
return 0;
if (rtm->rtm_protocol == RTPROT_REDIRECT)
return 0;
if (rtm->rtm_protocol == RTPROT_KERNEL)
return 0;
selfroute = is_selfroute(rtm->rtm_protocol);
if (!startup && selfroute && h->nlmsg_type == RTM_NEWROUTE) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("Route type: %d Received that we think we have originated, ignoring",
rtm->rtm_protocol);
return 0;
}
/* We don't care about change notifications for the MPLS table. */
/* TODO: Revisit this. */
if (rtm->rtm_family == AF_MPLS)
return 0;
/* Table corresponding to route. */
if (tb[RTA_TABLE])
table = *(int *)RTA_DATA(tb[RTA_TABLE]);
else
table = rtm->rtm_table;
/* Map to VRF */
vrf_id = vrf_lookup_by_table(table, ns_id);
if (vrf_id == VRF_DEFAULT) {
if (!is_zebra_valid_kernel_table(table)
&& !is_zebra_main_routing_table(table))
return 0;
}
if (rtm->rtm_flags & RTM_F_TRAP)
flags |= ZEBRA_FLAG_TRAPPED;
if (rtm->rtm_flags & RTM_F_OFFLOAD)
flags |= ZEBRA_FLAG_OFFLOADED;
2002-12-13 21:15:29 +01:00
/* Route which inserted by Zebra. */
if (selfroute) {
2002-12-13 21:15:29 +01:00
flags |= ZEBRA_FLAG_SELFROUTE;
proto = proto2zebra(rtm->rtm_protocol, rtm->rtm_family, false);
}
2002-12-13 21:15:29 +01:00
if (tb[RTA_OIF])
index = *(int *)RTA_DATA(tb[RTA_OIF]);
2002-12-13 21:15:29 +01:00
if (tb[RTA_DST])
dest = RTA_DATA(tb[RTA_DST]);
else
dest = anyaddr;
if (tb[RTA_SRC])
src = RTA_DATA(tb[RTA_SRC]);
else
src = anyaddr;
[zebra] Routemap support on received routes, with 'set src' command (linux) 2007-05-01 David L Stevens <dlstevens@us.ibm.com> * (general) These changes collectively add route-map and prefix-list support to zebra and fix a bug in "show route-map" (with no argument). * doc/main.texi: added route-map, prefix-list, ip protocol and set src documentation * lib/command.h: added PROTOCOL_NODE type * lib/log.c: (proto_name2num) new function, protocol name to number translation. * lib/routemap.c: (vty_show_route_map) fixed "show route-map" without route-map name * lib/routemap.h: added RMAP_ZEBRA type * lib/zebra.h: added proto_name2num() prototype * vtysh/extract.pl.in: added VTYSH_ZEBRA flag for route-map and plist * vtysh/Makefile.am: added zebra_routemap.c * vtysh/vtysh.h: added VTYSH_ZEBRA flag to VTYSH_RMAP * zebra/connected.c: (connected_up_ipv4) added src preference argument to rib_add_ipv4() * zebra/kernel_socket.c: (rtm_read) ditto * zebra/main.c: added prefix list initialization * zebra/Makefile.am: added zebra_routemap.c source file * zebra/rib.h: added generic address union "g_addr" and use in existing places that had an explicit union. Added "src" to struct nexthop. Added preferred src arg to nexthop_ipv4_add and rib_add_ipv4. * zebra/rt_netlink.c: (netlink_routing_table) set preferred source on netlink messages. (netlink_route_change) ditto (netlink_route_multipath) ditto. * zebra/rtread_getmsg.c: (handle_route_entry) added (NULL) src to rib_add_ipv4() call. * zebra/rtread_proc.c: (proc_route_read) ditto * zebra/zebra_rib.c: (nexthop_ipv4_add) add src argument. (nexthop_ipv4_ifindex_add) ditto (rib_add_ipv4) ditto (nexthop_active_check) Add route-map processing. * zebra/zebra_routemap.c: new file for zebra route-map commands. * zebra/zebra_vty.c: (ip_protocol_cmd) Apply route-map to protocol (vty_show_ip_route_detail) added "src" printing (vty_show_ip_route) ditto (show_ip_protocol_cmd) new command, list routemaps. (config_write_protocol) write out routemap protocl config. (zebra_vty_init) Install the new routemap protocol commands. * zebra/zserv.c: (zread_ipv4_add) added (NULL) src arg (zebra_init) init zebra route-maps. * zebra/zserv.h: add zebra_route_map_init
2007-05-02 18:05:35 +02:00
if (tb[RTA_PREFSRC])
prefsrc = RTA_DATA(tb[RTA_PREFSRC]);
2002-12-13 21:15:29 +01:00
if (tb[RTA_GATEWAY])
gate = RTA_DATA(tb[RTA_GATEWAY]);
if (tb[RTA_NH_ID])
nhe_id = *(uint32_t *)RTA_DATA(tb[RTA_NH_ID]);
if (tb[RTA_PRIORITY])
metric = *(int *)RTA_DATA(tb[RTA_PRIORITY]);
#if defined(SUPPORT_REALMS)
if (tb[RTA_FLOW])
tag = *(uint32_t *)RTA_DATA(tb[RTA_FLOW]);
#endif
if (tb[RTA_METRICS]) {
struct rtattr *mxrta[RTAX_MAX + 1];
memset(mxrta, 0, sizeof(mxrta));
netlink_parse_rtattr(mxrta, RTAX_MAX, RTA_DATA(tb[RTA_METRICS]),
RTA_PAYLOAD(tb[RTA_METRICS]));
if (mxrta[RTAX_MTU])
mtu = *(uint32_t *)RTA_DATA(mxrta[RTAX_MTU]);
}
2002-12-13 21:15:29 +01:00
if (rtm->rtm_family == AF_INET) {
p.family = AF_INET;
if (rtm->rtm_dst_len > IPV4_MAX_BITLEN) {
zlog_err(
"Invalid destination prefix length: %u received from kernel route change",
rtm->rtm_dst_len);
return -1;
}
memcpy(&p.u.prefix4, dest, 4);
2002-12-13 21:15:29 +01:00
p.prefixlen = rtm->rtm_dst_len;
if (rtm->rtm_src_len != 0) {
flog_warn(
EC_ZEBRA_UNSUPPORTED_V4_SRCDEST,
"unsupported IPv4 sourcedest route (dest %pFX vrf %u)",
&p, vrf_id);
return 0;
}
/* Force debug below to not display anything for source */
src_p.prefixlen = 0;
} else if (rtm->rtm_family == AF_INET6) {
p.family = AF_INET6;
if (rtm->rtm_dst_len > IPV6_MAX_BITLEN) {
zlog_err(
"Invalid destination prefix length: %u received from kernel route change",
rtm->rtm_dst_len);
return -1;
}
memcpy(&p.u.prefix6, dest, 16);
p.prefixlen = rtm->rtm_dst_len;
src_p.family = AF_INET6;
if (rtm->rtm_src_len > IPV6_MAX_BITLEN) {
zlog_err(
"Invalid source prefix length: %u received from kernel route change",
rtm->rtm_src_len);
return -1;
}
memcpy(&src_p.prefix, src, 16);
src_p.prefixlen = rtm->rtm_src_len;
}
/*
* For ZEBRA_ROUTE_KERNEL types:
*
* The metric/priority of the route received from the kernel
* is a 32 bit number. We are going to interpret the high
* order byte as the Admin Distance and the low order 3 bytes
* as the metric.
*
* This will allow us to do two things:
* 1) Allow the creation of kernel routes that can be
* overridden by zebra.
* 2) Allow the old behavior for 'most' kernel route types
* if a user enters 'ip route ...' v4 routes get a metric
* of 0 and v6 routes get a metric of 1024. Both of these
* values will end up with a admin distance of 0, which
* will cause them to win for the purposes of zebra.
*/
if (proto == ZEBRA_ROUTE_KERNEL) {
distance = (metric >> 24) & 0xFF;
metric = (metric & 0x00FFFFFF);
}
if (IS_ZEBRA_DEBUG_KERNEL) {
char buf2[PREFIX_STRLEN];
zlog_debug(
"%s %pFX%s%s vrf %s(%u) table_id: %u metric: %d Admin Distance: %d",
nl_msg_type_to_str(h->nlmsg_type), &p,
src_p.prefixlen ? " from " : "",
src_p.prefixlen ? prefix2str(&src_p, buf2, sizeof(buf2))
: "",
vrf_id_to_name(vrf_id), vrf_id, table, metric,
distance);
}
afi_t afi = AFI_IP;
if (rtm->rtm_family == AF_INET6)
afi = AFI_IP6;
if (h->nlmsg_type == RTM_NEWROUTE) {
if (!tb[RTA_MULTIPATH]) {
struct nexthop nh = {0};
if (!nhe_id) {
nh = parse_nexthop_unicast(
ns_id, rtm, tb, bh_type, index, prefsrc,
gate, afi, vrf_id);
}
rib_add(afi, SAFI_UNICAST, vrf_id, proto, 0, flags, &p,
&src_p, &nh, nhe_id, table, metric, mtu,
distance, tag);
} else {
/* This is a multipath route */
struct route_entry *re;
struct nexthop_group *ng = NULL;
struct rtnexthop *rtnh =
(struct rtnexthop *)RTA_DATA(tb[RTA_MULTIPATH]);
re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
re->type = proto;
re->distance = distance;
re->flags = flags;
re->metric = metric;
re->mtu = mtu;
re->vrf_id = vrf_id;
re->table = table;
re->uptime = monotime(NULL);
re->tag = tag;
re->nhe_id = nhe_id;
if (!nhe_id) {
uint8_t nhop_num;
/* Use temporary list of nexthops; parse
* message payload's nexthops.
*/
ng = nexthop_group_new();
nhop_num =
parse_multipath_nexthops_unicast(
ns_id, ng, rtm, rtnh, tb,
prefsrc, vrf_id);
zserv_nexthop_num_warn(
__func__, (const struct prefix *)&p,
nhop_num);
if (nhop_num == 0) {
nexthop_group_delete(&ng);
ng = NULL;
}
}
if (nhe_id || ng)
rib_add_multipath(afi, SAFI_UNICAST, &p,
&src_p, re, ng);
else
XFREE(MTYPE_RE, re);
}
} else {
if (nhe_id) {
rib_delete(afi, SAFI_UNICAST, vrf_id, proto, 0, flags,
&p, &src_p, NULL, nhe_id, table, metric,
distance, true, false);
} else {
if (!tb[RTA_MULTIPATH]) {
struct nexthop nh;
nh = parse_nexthop_unicast(
ns_id, rtm, tb, bh_type, index, prefsrc,
gate, afi, vrf_id);
rib_delete(afi, SAFI_UNICAST, vrf_id, proto, 0,
flags, &p, &src_p, &nh, 0, table,
metric, distance, true, false);
} else {
/* XXX: need to compare the entire list of
* nexthops here for NLM_F_APPEND stupidity */
rib_delete(afi, SAFI_UNICAST, vrf_id, proto, 0,
flags, &p, &src_p, NULL, 0, table,
metric, distance, true, false);
}
}
}
2002-12-13 21:15:29 +01:00
return 0;
}
static struct mcast_route_data *mroute = NULL;
static int netlink_route_change_read_multicast(struct nlmsghdr *h,
ns_id_t ns_id, int startup)
{
int len;
struct rtmsg *rtm;
struct rtattr *tb[RTA_MAX + 1];
struct mcast_route_data *m;
struct mcast_route_data mr;
int iif = 0;
int count;
int oif[256];
int oif_count = 0;
char oif_list[256] = "\0";
vrf_id_t vrf;
int table;
if (mroute)
m = mroute;
else {
memset(&mr, 0, sizeof(mr));
m = &mr;
}
rtm = NLMSG_DATA(h);
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
memset(tb, 0, sizeof(tb));
netlink_parse_rtattr(tb, RTA_MAX, RTM_RTA(rtm), len);
if (tb[RTA_TABLE])
table = *(int *)RTA_DATA(tb[RTA_TABLE]);
else
table = rtm->rtm_table;
vrf = vrf_lookup_by_table(table, ns_id);
if (tb[RTA_IIF])
iif = *(int *)RTA_DATA(tb[RTA_IIF]);
if (tb[RTA_SRC])
m->sg.src = *(struct in_addr *)RTA_DATA(tb[RTA_SRC]);
if (tb[RTA_DST])
m->sg.grp = *(struct in_addr *)RTA_DATA(tb[RTA_DST]);
if (tb[RTA_EXPIRES])
m->lastused = *(unsigned long long *)RTA_DATA(tb[RTA_EXPIRES]);
if (tb[RTA_MULTIPATH]) {
struct rtnexthop *rtnh =
(struct rtnexthop *)RTA_DATA(tb[RTA_MULTIPATH]);
len = RTA_PAYLOAD(tb[RTA_MULTIPATH]);
for (;;) {
if (len < (int)sizeof(*rtnh) || rtnh->rtnh_len > len)
break;
oif[oif_count] = rtnh->rtnh_ifindex;
oif_count++;
if (rtnh->rtnh_len == 0)
break;
len -= NLMSG_ALIGN(rtnh->rtnh_len);
rtnh = RTNH_NEXT(rtnh);
}
}
if (IS_ZEBRA_DEBUG_KERNEL) {
struct interface *ifp = NULL;
struct zebra_vrf *zvrf = NULL;
for (count = 0; count < oif_count; count++) {
ifp = if_lookup_by_index(oif[count], vrf);
char temp[256];
snprintf(temp, sizeof(temp), "%s(%d) ",
ifp ? ifp->name : "Unknown", oif[count]);
strlcat(oif_list, temp, sizeof(oif_list));
}
zvrf = zebra_vrf_lookup_by_id(vrf);
ifp = if_lookup_by_index(iif, vrf);
zlog_debug(
"MCAST VRF: %s(%d) %s (%pI4,%pI4) IIF: %s(%d) OIF: %s jiffies: %lld",
zvrf_name(zvrf), vrf, nl_msg_type_to_str(h->nlmsg_type),
&m->sg.src, &m->sg.grp, ifp ? ifp->name : "Unknown",
iif, oif_list,
m->lastused);
}
return 0;
}
int netlink_route_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
{
int len;
struct rtmsg *rtm;
rtm = NLMSG_DATA(h);
if (!(h->nlmsg_type == RTM_NEWROUTE || h->nlmsg_type == RTM_DELROUTE)) {
/* If this is not route add/delete message print warning. */
zlog_debug("Kernel message: %s NS %u",
nl_msg_type_to_str(h->nlmsg_type), ns_id);
return 0;
}
if (!(rtm->rtm_family == AF_INET ||
rtm->rtm_family == AF_INET6 ||
rtm->rtm_family == RTNL_FAMILY_IPMR )) {
flog_warn(
EC_ZEBRA_UNKNOWN_FAMILY,
"Invalid address family: %u received from kernel route change: %s",
rtm->rtm_family, nl_msg_type_to_str(h->nlmsg_type));
return 0;
}
/* Connected route. */
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s %s %s proto %s NS %u",
nl_msg_type_to_str(h->nlmsg_type),
nl_family_to_str(rtm->rtm_family),
nl_rttype_to_str(rtm->rtm_type),
nl_rtproto_to_str(rtm->rtm_protocol), ns_id);
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
if (len < 0) {
zlog_err(
"%s: Message received from netlink is of a broken size: %d %zu",
__func__, h->nlmsg_len,
(size_t)NLMSG_LENGTH(sizeof(struct rtmsg)));
return -1;
}
if (rtm->rtm_type == RTN_MULTICAST)
netlink_route_change_read_multicast(h, ns_id, startup);
else
netlink_route_change_read_unicast(h, ns_id, startup);
return 0;
}
/* Request for specific route information from the kernel */
static int netlink_request_route(struct zebra_ns *zns, int family, int type)
{
struct {
struct nlmsghdr n;
struct rtmsg rtm;
} req;
/* Form the request, specifying filter (rtattr) if needed. */
memset(&req, 0, sizeof(req));
req.n.nlmsg_type = type;
req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
req.rtm.rtm_family = family;
return netlink_request(&zns->netlink_cmd, &req);
}
2002-12-13 21:15:29 +01:00
/* Routing table read function using netlink interface. Only called
bootstrap time. */
int netlink_route_read(struct zebra_ns *zns)
2002-12-13 21:15:29 +01:00
{
int ret;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
2002-12-13 21:15:29 +01:00
/* Get IPv4 routing table. */
ret = netlink_request_route(zns, AF_INET, RTM_GETROUTE);
2002-12-13 21:15:29 +01:00
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_route_change_read_unicast,
&zns->netlink_cmd, &dp_info, 0, 1);
2002-12-13 21:15:29 +01:00
if (ret < 0)
return ret;
2002-12-13 21:15:29 +01:00
/* Get IPv6 routing table. */
ret = netlink_request_route(zns, AF_INET6, RTM_GETROUTE);
2002-12-13 21:15:29 +01:00
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_route_change_read_unicast,
&zns->netlink_cmd, &dp_info, 0, 1);
2002-12-13 21:15:29 +01:00
if (ret < 0)
return ret;
2002-12-13 21:15:29 +01:00
return 0;
}
/*
* The function returns true if the gateway info could be added
* to the message, otherwise false is returned.
*/
static bool _netlink_route_add_gateway_info(uint8_t route_family,
uint8_t gw_family,
struct nlmsghdr *nlmsg,
size_t req_size, int bytelen,
const struct nexthop *nexthop)
{
if (route_family == AF_MPLS) {
struct gw_family_t gw_fam;
gw_fam.family = gw_family;
if (gw_family == AF_INET)
memcpy(&gw_fam.gate.ipv4, &nexthop->gate.ipv4, bytelen);
else
memcpy(&gw_fam.gate.ipv6, &nexthop->gate.ipv6, bytelen);
if (!nl_attr_put(nlmsg, req_size, RTA_VIA, &gw_fam.family,
bytelen + 2))
return false;
} else {
if (!(nexthop->rparent
&& IS_MAPPED_IPV6(&nexthop->rparent->gate.ipv6))) {
if (gw_family == AF_INET) {
if (!nl_attr_put(nlmsg, req_size, RTA_GATEWAY,
&nexthop->gate.ipv4, bytelen))
return false;
} else {
if (!nl_attr_put(nlmsg, req_size, RTA_GATEWAY,
&nexthop->gate.ipv6, bytelen))
return false;
}
}
}
return true;
}
static int build_label_stack(struct mpls_label_stack *nh_label,
mpls_lse_t *out_lse, char *label_buf,
size_t label_buf_size)
{
char label_buf1[20];
int num_labels = 0;
for (int i = 0; nh_label && i < nh_label->num_labels; i++) {
if (nh_label->label[i] == MPLS_LABEL_IMPLICIT_NULL)
continue;
if (IS_ZEBRA_DEBUG_KERNEL) {
if (!num_labels)
sprintf(label_buf, "label %u",
nh_label->label[i]);
else {
snprintf(label_buf1, sizeof(label_buf1), "/%u",
nh_label->label[i]);
strlcat(label_buf, label_buf1, label_buf_size);
}
}
out_lse[num_labels] =
mpls_lse_encode(nh_label->label[i], 0, 0, 0);
num_labels++;
}
return num_labels;
}
static bool _netlink_route_encode_label_info(struct mpls_label_stack *nh_label,
struct nlmsghdr *nlmsg,
size_t buflen, struct rtmsg *rtmsg,
char *label_buf,
size_t label_buf_size)
{
mpls_lse_t out_lse[MPLS_MAX_LABELS];
int num_labels;
/*
* label_buf is *only* currently used within debugging.
* As such when we assign it we are guarding it inside
* a debug test. If you want to change this make sure
* you fix this assumption
*/
label_buf[0] = '\0';
num_labels =
build_label_stack(nh_label, out_lse, label_buf, label_buf_size);
if (num_labels) {
/* Set the BoS bit */
out_lse[num_labels - 1] |= htonl(1 << MPLS_LS_S_SHIFT);
if (rtmsg->rtm_family == AF_MPLS) {
if (!nl_attr_put(nlmsg, buflen, RTA_NEWDST, &out_lse,
num_labels * sizeof(mpls_lse_t)))
return false;
} else {
struct rtattr *nest;
if (!nl_attr_put16(nlmsg, buflen, RTA_ENCAP_TYPE,
LWTUNNEL_ENCAP_MPLS))
return false;
nest = nl_attr_nest(nlmsg, buflen, RTA_ENCAP);
if (!nest)
return false;
if (!nl_attr_put(nlmsg, buflen, MPLS_IPTUNNEL_DST,
&out_lse,
num_labels * sizeof(mpls_lse_t)))
return false;
nl_attr_nest_end(nlmsg, nest);
}
}
return true;
}
static bool _netlink_route_encode_nexthop_src(const struct nexthop *nexthop,
int family,
struct nlmsghdr *nlmsg,
size_t buflen, int bytelen)
{
if (family == AF_INET) {
if (nexthop->rmap_src.ipv4.s_addr != INADDR_ANY) {
if (!nl_attr_put(nlmsg, buflen, RTA_PREFSRC,
&nexthop->rmap_src.ipv4, bytelen))
return false;
} else if (nexthop->src.ipv4.s_addr != INADDR_ANY) {
if (!nl_attr_put(nlmsg, buflen, RTA_PREFSRC,
&nexthop->src.ipv4, bytelen))
return false;
}
} else if (family == AF_INET6) {
if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->rmap_src.ipv6)) {
if (!nl_attr_put(nlmsg, buflen, RTA_PREFSRC,
&nexthop->rmap_src.ipv6, bytelen))
return false;
} else if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->src.ipv6)) {
if (!nl_attr_put(nlmsg, buflen, RTA_PREFSRC,
&nexthop->src.ipv6, bytelen))
return false;
}
}
return true;
}
/* This function takes a nexthop as argument and adds
* the appropriate netlink attributes to an existing
* netlink message.
*
* @param routedesc: Human readable description of route type
* (direct/recursive, single-/multipath)
* @param bytelen: Length of addresses in bytes.
* @param nexthop: Nexthop information
* @param nlmsg: nlmsghdr structure to fill in.
* @param req_size: The size allocated for the message.
*
* The function returns true if the nexthop could be added
* to the message, otherwise false is returned.
*/
static bool _netlink_route_build_singlepath(const struct prefix *p,
const char *routedesc, int bytelen,
const struct nexthop *nexthop,
struct nlmsghdr *nlmsg,
struct rtmsg *rtmsg,
size_t req_size, int cmd)
{
char label_buf[256];
struct vrf *vrf;
char addrstr[INET6_ADDRSTRLEN];
assert(nexthop);
vrf = vrf_lookup_by_id(nexthop->vrf_id);
if (!_netlink_route_encode_label_info(nexthop->nh_label, nlmsg,
req_size, rtmsg, label_buf,
sizeof(label_buf)))
return false;
if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK))
rtmsg->rtm_flags |= RTNH_F_ONLINK;
if (is_route_v4_over_v6(rtmsg->rtm_family, nexthop->type)) {
rtmsg->rtm_flags |= RTNH_F_ONLINK;
if (!nl_attr_put(nlmsg, req_size, RTA_GATEWAY, &ipv4_ll, 4))
return false;
if (!nl_attr_put32(nlmsg, req_size, RTA_OIF, nexthop->ifindex))
return false;
if (cmd == RTM_NEWROUTE) {
if (!_netlink_route_encode_nexthop_src(
nexthop, AF_INET, nlmsg, req_size, bytelen))
return false;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: 5549 (%s): %pFX nexthop via %s %s if %u vrf %s(%u)",
__func__, routedesc, p, ipv4_ll_buf,
label_buf, nexthop->ifindex,
VRF_LOGNAME(vrf), nexthop->vrf_id);
return true;
}
if (nexthop->type == NEXTHOP_TYPE_IPV4
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX) {
/* Send deletes to the kernel without specifying the next-hop */
if (cmd != RTM_DELROUTE) {
if (!_netlink_route_add_gateway_info(
rtmsg->rtm_family, AF_INET, nlmsg, req_size,
bytelen, nexthop))
return false;
}
if (cmd == RTM_NEWROUTE) {
if (!_netlink_route_encode_nexthop_src(
nexthop, AF_INET, nlmsg, req_size, bytelen))
return false;
}
if (IS_ZEBRA_DEBUG_KERNEL) {
inet_ntop(AF_INET, &nexthop->gate.ipv4, addrstr,
sizeof(addrstr));
zlog_debug("%s: (%s): %pFX nexthop via %s %s if %u vrf %s(%u)",
__func__, routedesc, p, addrstr, label_buf,
nexthop->ifindex, VRF_LOGNAME(vrf),
nexthop->vrf_id);
}
}
if (nexthop->type == NEXTHOP_TYPE_IPV6
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX) {
if (!_netlink_route_add_gateway_info(rtmsg->rtm_family,
AF_INET6, nlmsg, req_size,
bytelen, nexthop))
return false;
if (cmd == RTM_NEWROUTE) {
if (!_netlink_route_encode_nexthop_src(
nexthop, AF_INET6, nlmsg, req_size,
bytelen))
return false;
}
if (IS_ZEBRA_DEBUG_KERNEL) {
inet_ntop(AF_INET6, &nexthop->gate.ipv6, addrstr,
sizeof(addrstr));
zlog_debug("%s: (%s): %pFX nexthop via %s %s if %u vrf %s(%u)",
__func__, routedesc, p, addrstr, label_buf,
nexthop->ifindex, VRF_LOGNAME(vrf),
nexthop->vrf_id);
}
}
/*
* We have the ifindex so we should always send it
* This is especially useful if we are doing route
* leaking.
*/
if (nexthop->type != NEXTHOP_TYPE_BLACKHOLE) {
if (!nl_attr_put32(nlmsg, req_size, RTA_OIF, nexthop->ifindex))
return false;
}
if (nexthop->type == NEXTHOP_TYPE_IFINDEX) {
if (cmd == RTM_NEWROUTE) {
if (!_netlink_route_encode_nexthop_src(
nexthop, AF_INET, nlmsg, req_size, bytelen))
return false;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: (%s): %pFX nexthop via if %u vrf %s(%u)",
__func__, routedesc, p, nexthop->ifindex,
VRF_LOGNAME(vrf), nexthop->vrf_id);
}
return true;
}
/* This function takes a nexthop as argument and
* appends to the given netlink msg. If the nexthop
* defines a preferred source, the src parameter
* will be modified to point to that src, otherwise
* it will be kept unmodified.
*
* @param routedesc: Human readable description of route type
* (direct/recursive, single-/multipath)
* @param bytelen: Length of addresses in bytes.
* @param nexthop: Nexthop information
* @param nlmsg: nlmsghdr structure to fill in.
* @param req_size: The size allocated for the message.
* @param src: pointer pointing to a location where
* the prefsrc should be stored.
*
* The function returns true if the nexthop could be added
* to the message, otherwise false is returned.
*/
static bool _netlink_route_build_multipath(const struct prefix *p,
const char *routedesc, int bytelen,
const struct nexthop *nexthop,
struct nlmsghdr *nlmsg,
size_t req_size, struct rtmsg *rtmsg,
const union g_addr **src)
{
char label_buf[256];
struct vrf *vrf;
struct rtnexthop *rtnh;
rtnh = nl_attr_rtnh(nlmsg, req_size);
if (rtnh == NULL)
return false;
assert(nexthop);
vrf = vrf_lookup_by_id(nexthop->vrf_id);
if (!_netlink_route_encode_label_info(nexthop->nh_label, nlmsg,
req_size, rtmsg, label_buf,
sizeof(label_buf)))
return false;
if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK))
rtnh->rtnh_flags |= RTNH_F_ONLINK;
if (is_route_v4_over_v6(rtmsg->rtm_family, nexthop->type)) {
rtnh->rtnh_flags |= RTNH_F_ONLINK;
if (!nl_attr_put(nlmsg, req_size, RTA_GATEWAY, &ipv4_ll, 4))
return false;
rtnh->rtnh_ifindex = nexthop->ifindex;
if (nexthop->weight)
rtnh->rtnh_hops = nexthop->weight - 1;
if (nexthop->rmap_src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->rmap_src;
else if (nexthop->src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->src;
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s: 5549 (%s): %pFX nexthop via %s %s if %u vrf %s(%u)",
__func__, routedesc, p, ipv4_ll_buf, label_buf,
nexthop->ifindex, VRF_LOGNAME(vrf),
nexthop->vrf_id);
nl_attr_rtnh_end(nlmsg, rtnh);
return true;
}
if (nexthop->type == NEXTHOP_TYPE_IPV4
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX) {
if (!_netlink_route_add_gateway_info(rtmsg->rtm_family, AF_INET,
nlmsg, req_size, bytelen,
nexthop))
return false;
if (nexthop->rmap_src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->rmap_src;
else if (nexthop->src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->src;
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: (%s): %pFX nexthop via %pI4 %s if %u vrf %s(%u)",
__func__, routedesc, p, &nexthop->gate.ipv4,
label_buf, nexthop->ifindex,
VRF_LOGNAME(vrf), nexthop->vrf_id);
}
if (nexthop->type == NEXTHOP_TYPE_IPV6
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX) {
if (!_netlink_route_add_gateway_info(rtmsg->rtm_family,
AF_INET6, nlmsg, req_size,
bytelen, nexthop))
return false;
if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->rmap_src.ipv6))
*src = &nexthop->rmap_src;
else if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->src.ipv6))
*src = &nexthop->src;
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: (%s): %pFX nexthop via %pI6 %s if %u vrf %s(%u)",
__func__, routedesc, p, &nexthop->gate.ipv6,
label_buf, nexthop->ifindex,
VRF_LOGNAME(vrf), nexthop->vrf_id);
}
/*
* We have figured out the ifindex so we should always send it
* This is especially useful if we are doing route
* leaking.
*/
if (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)
rtnh->rtnh_ifindex = nexthop->ifindex;
/* ifindex */
if (nexthop->type == NEXTHOP_TYPE_IFINDEX) {
if (nexthop->rmap_src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->rmap_src;
else if (nexthop->src.ipv4.s_addr != INADDR_ANY)
*src = &nexthop->src;
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: (%s): %pFX nexthop via if %u vrf %s(%u)",
__func__, routedesc, p, nexthop->ifindex,
VRF_LOGNAME(vrf), nexthop->vrf_id);
}
if (nexthop->weight)
rtnh->rtnh_hops = nexthop->weight - 1;
nl_attr_rtnh_end(nlmsg, rtnh);
return true;
}
static inline bool _netlink_mpls_build_singlepath(const struct prefix *p,
const char *routedesc,
const zebra_nhlfe_t *nhlfe,
struct nlmsghdr *nlmsg,
struct rtmsg *rtmsg,
size_t req_size, int cmd)
{
int bytelen;
uint8_t family;
family = NHLFE_FAMILY(nhlfe);
bytelen = (family == AF_INET ? 4 : 16);
return _netlink_route_build_singlepath(p, routedesc, bytelen,
nhlfe->nexthop, nlmsg, rtmsg,
req_size, cmd);
}
static inline bool
_netlink_mpls_build_multipath(const struct prefix *p, const char *routedesc,
const zebra_nhlfe_t *nhlfe,
struct nlmsghdr *nlmsg, size_t req_size,
struct rtmsg *rtmsg, const union g_addr **src)
{
int bytelen;
uint8_t family;
family = NHLFE_FAMILY(nhlfe);
bytelen = (family == AF_INET ? 4 : 16);
return _netlink_route_build_multipath(p, routedesc, bytelen,
nhlfe->nexthop, nlmsg, req_size,
rtmsg, src);
}
static void _netlink_mpls_debug(int cmd, uint32_t label, const char *routedesc)
{
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("netlink_mpls_multipath_msg_encode() (%s): %s %u/20",
routedesc, nl_msg_type_to_str(cmd), label);
}
static int netlink_neigh_update(int cmd, int ifindex, uint32_t addr, char *lla,
int llalen, ns_id_t ns_id)
2015-06-11 18:19:59 +02:00
{
uint8_t protocol = RTPROT_ZEBRA;
2015-06-11 18:19:59 +02:00
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req;
struct zebra_ns *zns = zebra_ns_lookup(ns_id);
memset(&req, 0, sizeof(req));
2015-06-11 18:19:59 +02:00
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
req.n.nlmsg_type = cmd; // RTM_NEWNEIGH or RTM_DELNEIGH
req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
2015-06-11 18:19:59 +02:00
req.ndm.ndm_family = AF_INET;
req.ndm.ndm_state = NUD_PERMANENT;
req.ndm.ndm_ifindex = ifindex;
req.ndm.ndm_type = RTN_UNICAST;
nl_attr_put(&req.n, sizeof(req), NDA_PROTOCOL, &protocol,
sizeof(protocol));
nl_attr_put32(&req.n, sizeof(req), NDA_DST, addr);
nl_attr_put(&req.n, sizeof(req), NDA_LLADDR, lla, llalen);
2015-06-11 18:19:59 +02:00
return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
0);
2015-06-11 18:19:59 +02:00
}
static bool nexthop_set_src(const struct nexthop *nexthop, int family,
union g_addr *src)
{
if (family == AF_INET) {
if (nexthop->rmap_src.ipv4.s_addr != INADDR_ANY) {
src->ipv4 = nexthop->rmap_src.ipv4;
return true;
} else if (nexthop->src.ipv4.s_addr != INADDR_ANY) {
src->ipv4 = nexthop->src.ipv4;
return true;
}
} else if (family == AF_INET6) {
if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->rmap_src.ipv6)) {
src->ipv6 = nexthop->rmap_src.ipv6;
return true;
} else if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->src.ipv6)) {
src->ipv6 = nexthop->src.ipv6;
return true;
}
}
return false;
}
/*
* The function returns true if the attribute could be added
* to the message, otherwise false is returned.
*/
static int netlink_route_nexthop_encap(struct nlmsghdr *n, size_t nlen,
struct nexthop *nh)
{
struct rtattr *nest;
switch (nh->nh_encap_type) {
case NET_VXLAN:
if (!nl_attr_put16(n, nlen, RTA_ENCAP_TYPE, nh->nh_encap_type))
return false;
nest = nl_attr_nest(n, nlen, RTA_ENCAP);
if (!nest)
return false;
if (!nl_attr_put32(n, nlen, 0 /* VXLAN_VNI */,
nh->nh_encap.vni))
return false;
nl_attr_nest_end(n, nest);
break;
}
return true;
}
/*
* Routing table change via netlink interface, using a dataplane context object
*
* Returns -1 on failure, 0 when the msg doesn't fit entirely in the buffer
* otherwise the number of bytes written to buf.
*/
ssize_t netlink_route_multipath_msg_encode(int cmd,
struct zebra_dplane_ctx *ctx,
uint8_t *data, size_t datalen,
bool fpm, bool force_nhg)
{
int bytelen;
struct nexthop *nexthop = NULL;
unsigned int nexthop_num;
const char *routedesc;
bool setsrc = false;
union g_addr src;
const struct prefix *p, *src_p;
uint32_t table_id;
struct {
struct nlmsghdr n;
struct rtmsg r;
char buf[];
} *req = (void *)data;
p = dplane_ctx_get_dest(ctx);
src_p = dplane_ctx_get_src(ctx);
if (datalen < sizeof(*req))
return 0;
memset(req, 0, sizeof(*req));
bytelen = (p->family == AF_INET ? 4 : 16);
req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
req->n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
if ((cmd == RTM_NEWROUTE) &&
((p->family == AF_INET) || v6_rr_semantics))
req->n.nlmsg_flags |= NLM_F_REPLACE;
req->n.nlmsg_type = cmd;
req->n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
req->r.rtm_family = p->family;
req->r.rtm_dst_len = p->prefixlen;
req->r.rtm_src_len = src_p ? src_p->prefixlen : 0;
req->r.rtm_scope = RT_SCOPE_UNIVERSE;
if (cmd == RTM_DELROUTE)
req->r.rtm_protocol = zebra2proto(dplane_ctx_get_old_type(ctx));
else
req->r.rtm_protocol = zebra2proto(dplane_ctx_get_type(ctx));
/*
* blackhole routes are not RTN_UNICAST, they are
* RTN_ BLACKHOLE|UNREACHABLE|PROHIBIT
* so setting this value as a RTN_UNICAST would
* cause the route lookup of just the prefix
* to fail. So no need to specify this for
* the RTM_DELROUTE case
*/
if (cmd != RTM_DELROUTE)
req->r.rtm_type = RTN_UNICAST;
if (!nl_attr_put(&req->n, datalen, RTA_DST, &p->u.prefix, bytelen))
return 0;
if (src_p) {
if (!nl_attr_put(&req->n, datalen, RTA_SRC, &src_p->u.prefix,
bytelen))
return 0;
}
/* Metric. */
/* Hardcode the metric for all routes coming from zebra. Metric isn't
* used
* either by the kernel or by zebra. Its purely for calculating best
* path(s)
* by the routing protocol and for communicating with protocol peers.
*/
if (!nl_attr_put32(&req->n, datalen, RTA_PRIORITY,
NL_DEFAULT_ROUTE_METRIC))
return 0;
#if defined(SUPPORT_REALMS)
{
route_tag_t tag;
if (cmd == RTM_DELROUTE)
tag = dplane_ctx_get_old_tag(ctx);
else
tag = dplane_ctx_get_tag(ctx);
if (tag > 0 && tag <= 255) {
if (!nl_attr_put32(&req->n, datalen, RTA_FLOW, tag))
return 0;
}
}
#endif
/* Table corresponding to this route. */
table_id = dplane_ctx_get_table(ctx);
if (table_id < 256)
req->r.rtm_table = table_id;
else {
req->r.rtm_table = RT_TABLE_UNSPEC;
if (!nl_attr_put32(&req->n, datalen, RTA_TABLE, table_id))
return 0;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s: %s %pFX vrf %u(%u)", __func__,
nl_msg_type_to_str(cmd), p, dplane_ctx_get_vrf(ctx),
table_id);
/*
* If we are not updating the route and we have received
* a route delete, then all we need to fill in is the
* prefix information to tell the kernel to schwack
* it.
*/
if (cmd == RTM_DELROUTE)
return NLMSG_ALIGN(req->n.nlmsg_len);
if (dplane_ctx_get_mtu(ctx) || dplane_ctx_get_nh_mtu(ctx)) {
struct rtattr *nest;
uint32_t mtu = dplane_ctx_get_mtu(ctx);
uint32_t nexthop_mtu = dplane_ctx_get_nh_mtu(ctx);
if (!mtu || (nexthop_mtu && nexthop_mtu < mtu))
mtu = nexthop_mtu;
nest = nl_attr_nest(&req->n, datalen, RTA_METRICS);
if (nest == NULL)
return 0;
if (!nl_attr_put(&req->n, datalen, RTAX_MTU, &mtu, sizeof(mtu)))
return 0;
nl_attr_nest_end(&req->n, nest);
}
if ((!fpm && kernel_nexthops_supported()
&& (!proto_nexthops_only()
|| is_proto_nhg(dplane_ctx_get_nhe_id(ctx), 0)))
|| (fpm && force_nhg)) {
/* Kernel supports nexthop objects */
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: %pFX nhg_id is %u", __func__, p,
dplane_ctx_get_nhe_id(ctx));
if (!nl_attr_put32(&req->n, datalen, RTA_NH_ID,
dplane_ctx_get_nhe_id(ctx)))
return 0;
/* Have to determine src still */
for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
if (setsrc)
break;
setsrc = nexthop_set_src(nexthop, p->family, &src);
}
if (setsrc) {
if (p->family == AF_INET) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv4, bytelen))
return 0;
} else if (p->family == AF_INET6) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv6, bytelen))
return 0;
}
}
return NLMSG_ALIGN(req->n.nlmsg_len);
}
/* Count overall nexthops so we can decide whether to use singlepath
* or multipath case.
*/
nexthop_num = 0;
for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
continue;
if (!NEXTHOP_IS_ACTIVE(nexthop->flags))
continue;
nexthop_num++;
}
/* Singlepath case. */
zebra: Allow zebra to only mark up to multipath_num nexthops as ACTIVE NEXTHOP_FLAG_ACTIVE currently means that the nexthop is considered good enough to be installed. With current ecmp restrictions this translation from multipath_num is enforced in the data plane. The problem with this is of course that every data plane now becomes concerned about the multipath num and must enforce it independently. Currently *bsd does not honor multipath_num at all and linux marks all nexthops as being installed even when it honors a multipath_num that is less than the total. This code change moves the multipath_num enforcement from a dataplane decision to a zebra nexthop decision. Thus dataplanes now can just install those nexthops marked as NEXTHOP_FLAG_ACTIVE without having to worry about multipath_num. *BSD will now respect multipath_num and Linux now properly notes which routes are actually installed or not: sharpd@donna ~/f/t/topotests> ps -ef | grep frr frr 6261 1556 0 09:12 ? 00:00:00 /usr/lib/frr/zebra -e 2 --daemon -A 127.0.0.1 frr 6279 1556 0 09:12 ? 00:00:00 /usr/lib/frr/staticd --daemon -A 127.0.0.1 donna.cumulusnetworks.com(config)# do show ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, f - OpenFabric, > - selected route, * - FIB route K>* 0.0.0.0/0 [0/106] via 10.0.2.2, enp0s3, 00:00:45 S>* 4.4.4.4/32 [1/0] via 10.0.2.1, enp0s3, 00:00:02 * via 192.168.209.1, enp0s8, 00:00:02 via 192.168.210.1, enp0s9 inactive, 00:00:02 C>* 10.0.2.0/24 is directly connected, enp0s3, 00:00:45 C>* 192.168.209.0/24 is directly connected, enp0s8, 00:00:45 C>* 192.168.210.0/24 is directly connected, enp0s9, 00:00:45 donna.cumulusnetworks.com(config)# sharpd@donna ~/f/t/topotests> ip route show default via 10.0.2.2 dev enp0s3 proto dhcp metric 106 4.4.4.4 proto 196 metric 20 nexthop via 10.0.2.1 dev enp0s3 weight 1 nexthop via 192.168.209.1 dev enp0s8 weight 1 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 106 172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1 linkdown 192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1 linkdown 192.168.209.0/24 dev enp0s8 proto kernel scope link src 192.168.209.2 metric 105 192.168.210.0/24 dev enp0s9 proto kernel scope link src 192.168.210.2 metric 103 Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
2018-12-13 15:21:26 +01:00
if (nexthop_num == 1) {
nexthop_num = 0;
for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
/*
* So we want to cover 2 types of blackhole
* routes here:
* 1) A normal blackhole route( ala from a static
* install.
* 2) A recursively resolved blackhole route
*/
if (nexthop->type == NEXTHOP_TYPE_BLACKHOLE) {
switch (nexthop->bh_type) {
case BLACKHOLE_ADMINPROHIB:
req->r.rtm_type = RTN_PROHIBIT;
break;
case BLACKHOLE_REJECT:
req->r.rtm_type = RTN_UNREACHABLE;
break;
default:
req->r.rtm_type = RTN_BLACKHOLE;
break;
}
return NLMSG_ALIGN(req->n.nlmsg_len);
}
if (CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_RECURSIVE)) {
if (setsrc)
continue;
setsrc = nexthop_set_src(nexthop, p->family,
&src);
continue;
}
if (NEXTHOP_IS_ACTIVE(nexthop->flags)) {
routedesc = nexthop->rparent
? "recursive, single-path"
: "single-path";
if (!_netlink_route_build_singlepath(
p, routedesc, bytelen, nexthop,
&req->n, &req->r, datalen, cmd))
return 0;
nexthop_num++;
break;
}
/*
* Add encapsulation information when installing via
* FPM.
*/
if (fpm) {
if (!netlink_route_nexthop_encap(
&req->n, datalen, nexthop))
return 0;
}
}
if (setsrc) {
if (p->family == AF_INET) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv4, bytelen))
return 0;
} else if (p->family == AF_INET6) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv6, bytelen))
return 0;
}
}
} else { /* Multipath case */
struct rtattr *nest;
const union g_addr *src1 = NULL;
nest = nl_attr_nest(&req->n, datalen, RTA_MULTIPATH);
if (nest == NULL)
return 0;
nexthop_num = 0;
for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
if (CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_RECURSIVE)) {
/* This only works for IPv4 now */
if (setsrc)
continue;
setsrc = nexthop_set_src(nexthop, p->family,
&src);
continue;
}
if (NEXTHOP_IS_ACTIVE(nexthop->flags)) {
routedesc = nexthop->rparent
? "recursive, multipath"
: "multipath";
nexthop_num++;
if (!_netlink_route_build_multipath(
p, routedesc, bytelen, nexthop,
&req->n, datalen, &req->r, &src1))
return 0;
if (!setsrc && src1) {
if (p->family == AF_INET)
src.ipv4 = src1->ipv4;
else if (p->family == AF_INET6)
src.ipv6 = src1->ipv6;
setsrc = 1;
}
}
}
nl_attr_nest_end(&req->n, nest);
/*
* Add encapsulation information when installing via
* FPM.
*/
if (fpm) {
for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
nexthop)) {
if (CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_RECURSIVE))
continue;
if (!netlink_route_nexthop_encap(
&req->n, datalen, nexthop))
return 0;
}
}
if (setsrc) {
if (p->family == AF_INET) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv4, bytelen))
return 0;
} else if (p->family == AF_INET6) {
if (!nl_attr_put(&req->n, datalen, RTA_PREFSRC,
&src.ipv6, bytelen))
return 0;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("Setting source");
}
}
/* If there is no useful nexthop then return. */
if (nexthop_num == 0) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: No useful nexthop.", __func__);
}
return NLMSG_ALIGN(req->n.nlmsg_len);
}
int kernel_get_ipmr_sg_stats(struct zebra_vrf *zvrf, void *in)
{
uint32_t actual_table;
int suc = 0;
struct mcast_route_data *mr = (struct mcast_route_data *)in;
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req;
mroute = mr;
struct zebra_ns *zns;
zns = zvrf->zns;
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
req.ndm.ndm_family = RTNL_FAMILY_IPMR;
req.n.nlmsg_type = RTM_GETROUTE;
nl_attr_put32(&req.n, sizeof(req), RTA_IIF, mroute->ifindex);
nl_attr_put32(&req.n, sizeof(req), RTA_OIF, mroute->ifindex);
nl_attr_put32(&req.n, sizeof(req), RTA_SRC, mroute->sg.src.s_addr);
nl_attr_put32(&req.n, sizeof(req), RTA_DST, mroute->sg.grp.s_addr);
/*
* What?
*
* So during the namespace cleanup we started storing
* the zvrf table_id for the default table as RT_TABLE_MAIN
* which is what the normal routing table for ip routing is.
* This change caused this to break our lookups of sg data
* because prior to this change the zvrf->table_id was 0
* and when the pim multicast kernel code saw a 0,
* it was auto-translated to RT_TABLE_DEFAULT. But since
* we are now passing in RT_TABLE_MAIN there is no auto-translation
* and the kernel goes screw you and the delicious cookies you
* are trying to give me. So now we have this little hack.
*/
actual_table = (zvrf->table_id == RT_TABLE_MAIN) ? RT_TABLE_DEFAULT :
zvrf->table_id;
nl_attr_put32(&req.n, sizeof(req), RTA_TABLE, actual_table);
suc = netlink_talk(netlink_route_change_read_multicast, &req.n,
&zns->netlink_cmd, zns, 0);
mroute = NULL;
return suc;
}
/* Char length to debug ID with */
#define ID_LENGTH 10
static bool _netlink_nexthop_build_group(struct nlmsghdr *n, size_t req_size,
uint32_t id,
const struct nh_grp *z_grp,
const uint8_t count)
{
struct nexthop_grp grp[count];
/* Need space for max group size, "/", and null term */
char buf[(MULTIPATH_NUM * (ID_LENGTH + 1)) + 1];
char buf1[ID_LENGTH + 2];
buf[0] = '\0';
memset(grp, 0, sizeof(grp));
if (count) {
for (int i = 0; i < count; i++) {
grp[i].id = z_grp[i].id;
grp[i].weight = z_grp[i].weight - 1;
if (IS_ZEBRA_DEBUG_KERNEL) {
if (i == 0)
snprintf(buf, sizeof(buf1), "group %u",
grp[i].id);
else {
snprintf(buf1, sizeof(buf1), "/%u",
grp[i].id);
strlcat(buf, buf1, sizeof(buf));
}
}
}
if (!nl_attr_put(n, req_size, NHA_GROUP, grp,
count * sizeof(*grp)))
return false;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: ID (%u): %s", __func__, id, buf);
return true;
}
/**
* Next hop packet encoding helper function.
*
* \param[in] cmd netlink command.
* \param[in] ctx dataplane context (information snapshot).
* \param[out] buf buffer to hold the packet.
* \param[in] buflen amount of buffer bytes.
*
* \returns -1 on failure, 0 when the msg doesn't fit entirely in the buffer
* otherwise the number of bytes written to buf.
*/
ssize_t netlink_nexthop_msg_encode(uint16_t cmd,
const struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
struct {
struct nlmsghdr n;
struct nhmsg nhm;
char buf[];
} *req = buf;
mpls_lse_t out_lse[MPLS_MAX_LABELS];
char label_buf[256];
int num_labels = 0;
uint32_t id = dplane_ctx_get_nhe_id(ctx);
int type = dplane_ctx_get_nhe_type(ctx);
struct rtattr *nest;
uint16_t encap;
if (!id) {
flog_err(
EC_ZEBRA_NHG_FIB_UPDATE,
"Failed trying to update a nexthop group in the kernel that does not have an ID");
return -1;
}
/*
* Nothing to do if the kernel doesn't support nexthop objects or
* we dont want to install this type of NHG
*/
if (!kernel_nexthops_supported()) {
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_NHG)
zlog_debug(
"%s: nhg_id %u (%s): kernel nexthops not supported, ignoring",
__func__, id, zebra_route_string(type));
return 0;
}
if (proto_nexthops_only() && !is_proto_nhg(id, type)) {
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_NHG)
zlog_debug(
"%s: nhg_id %u (%s): proto-based nexthops only, ignoring",
__func__, id, zebra_route_string(type));
return 0;
}
label_buf[0] = '\0';
if (buflen < sizeof(*req))
return 0;
memset(req, 0, sizeof(*req));
req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
req->n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
if (cmd == RTM_NEWNEXTHOP)
req->n.nlmsg_flags |= NLM_F_REPLACE;
req->n.nlmsg_type = cmd;
req->n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
req->nhm.nh_family = AF_UNSPEC;
/* TODO: Scope? */
if (!nl_attr_put32(&req->n, buflen, NHA_ID, id))
return 0;
if (cmd == RTM_NEWNEXTHOP) {
/*
* We distinguish between a "group", which is a collection
* of ids, and a singleton nexthop with an id. The
* group is installed as an id that just refers to a list of
* other ids.
*/
if (dplane_ctx_get_nhe_nh_grp_count(ctx)) {
if (!_netlink_nexthop_build_group(
&req->n, buflen, id,
dplane_ctx_get_nhe_nh_grp(ctx),
dplane_ctx_get_nhe_nh_grp_count(ctx)))
return 0;
} else {
const struct nexthop *nh =
dplane_ctx_get_nhe_ng(ctx)->nexthop;
afi_t afi = dplane_ctx_get_nhe_afi(ctx);
if (afi == AFI_IP)
req->nhm.nh_family = AF_INET;
else if (afi == AFI_IP6)
req->nhm.nh_family = AF_INET6;
switch (nh->type) {
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
if (!nl_attr_put(&req->n, buflen, NHA_GATEWAY,
&nh->gate.ipv4,
IPV4_MAX_BYTELEN))
return 0;
break;
case NEXTHOP_TYPE_IPV6:
case NEXTHOP_TYPE_IPV6_IFINDEX:
if (!nl_attr_put(&req->n, buflen, NHA_GATEWAY,
&nh->gate.ipv6,
IPV6_MAX_BYTELEN))
return 0;
break;
case NEXTHOP_TYPE_BLACKHOLE:
if (!nl_attr_put(&req->n, buflen, NHA_BLACKHOLE,
NULL, 0))
return 0;
/* Blackhole shouldn't have anymore attributes
*/
goto nexthop_done;
case NEXTHOP_TYPE_IFINDEX:
/* Don't need anymore info for this */
break;
}
if (!nh->ifindex) {
flog_err(
EC_ZEBRA_NHG_FIB_UPDATE,
"Context received for kernel nexthop update without an interface");
return -1;
}
if (!nl_attr_put32(&req->n, buflen, NHA_OIF,
nh->ifindex))
return 0;
if (CHECK_FLAG(nh->flags, NEXTHOP_FLAG_ONLINK))
req->nhm.nh_flags |= RTNH_F_ONLINK;
num_labels =
build_label_stack(nh->nh_label, out_lse,
label_buf, sizeof(label_buf));
if (num_labels) {
/* Set the BoS bit */
out_lse[num_labels - 1] |=
htonl(1 << MPLS_LS_S_SHIFT);
/*
* TODO: MPLS unsupported for now in kernel.
*/
if (req->nhm.nh_family == AF_MPLS)
goto nexthop_done;
encap = LWTUNNEL_ENCAP_MPLS;
if (!nl_attr_put16(&req->n, buflen,
NHA_ENCAP_TYPE, encap))
return 0;
nest = nl_attr_nest(&req->n, buflen, NHA_ENCAP);
if (!nest)
return 0;
if (!nl_attr_put(
&req->n, buflen, MPLS_IPTUNNEL_DST,
&out_lse,
num_labels * sizeof(mpls_lse_t)))
return 0;
nl_attr_nest_end(&req->n, nest);
}
nexthop_done:
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: ID (%u): %pNHv(%d) vrf %s(%u) %s ",
__func__, id, nh, nh->ifindex,
vrf_id_to_name(nh->vrf_id),
nh->vrf_id, label_buf);
}
req->nhm.nh_protocol = zebra2proto(type);
} else if (cmd != RTM_DELNEXTHOP) {
flog_err(
EC_ZEBRA_NHG_FIB_UPDATE,
"Nexthop group kernel update command (%d) does not exist",
cmd);
return -1;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: %s, id=%u", __func__, nl_msg_type_to_str(cmd),
id);
return NLMSG_ALIGN(req->n.nlmsg_len);
}
static ssize_t netlink_nexthop_msg_encoder(struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
enum dplane_op_e op;
int cmd = 0;
op = dplane_ctx_get_op(ctx);
if (op == DPLANE_OP_NH_INSTALL || op == DPLANE_OP_NH_UPDATE)
cmd = RTM_NEWNEXTHOP;
else if (op == DPLANE_OP_NH_DELETE)
cmd = RTM_DELNEXTHOP;
else {
flog_err(EC_ZEBRA_NHG_FIB_UPDATE,
"Context received for kernel nexthop update with incorrect OP code (%u)",
op);
return -1;
}
return netlink_nexthop_msg_encode(cmd, ctx, buf, buflen);
}
enum netlink_msg_status
netlink_put_nexthop_update_msg(struct nl_batch *bth,
struct zebra_dplane_ctx *ctx)
{
/* Nothing to do if the kernel doesn't support nexthop objects */
if (!kernel_nexthops_supported())
return FRR_NETLINK_SUCCESS;
return netlink_batch_add_msg(bth, ctx, netlink_nexthop_msg_encoder,
false);
}
static ssize_t netlink_newroute_msg_encoder(struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
return netlink_route_multipath_msg_encode(RTM_NEWROUTE, ctx, buf,
buflen, false, false);
}
static ssize_t netlink_delroute_msg_encoder(struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
return netlink_route_multipath_msg_encode(RTM_DELROUTE, ctx, buf,
buflen, false, false);
}
enum netlink_msg_status
netlink_put_route_update_msg(struct nl_batch *bth, struct zebra_dplane_ctx *ctx)
{
int cmd;
const struct prefix *p = dplane_ctx_get_dest(ctx);
if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_DELETE) {
cmd = RTM_DELROUTE;
} else if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_INSTALL) {
cmd = RTM_NEWROUTE;
} else if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_UPDATE) {
if (p->family == AF_INET || v6_rr_semantics) {
/* Single 'replace' operation */
/*
* With route replace semantics in place
* for v4 routes and the new route is a system
* route we do not install anything.
* The problem here is that the new system
* route should cause us to withdraw from
* the kernel the old non-system route
*/
if (RSYSTEM_ROUTE(dplane_ctx_get_type(ctx))
&& !RSYSTEM_ROUTE(dplane_ctx_get_old_type(ctx)))
netlink_batch_add_msg(
bth, ctx, netlink_delroute_msg_encoder,
true);
} else {
/*
* So v6 route replace semantics are not in
* the kernel at this point as I understand it.
* so let's do a delete then an add.
* In the future once v6 route replace semantics
* are in we can figure out what to do here to
* allow working with old and new kernels.
*
* I'm also intentionally ignoring the failure case
* of the route delete. If that happens yeah we're
* screwed.
*/
if (!RSYSTEM_ROUTE(dplane_ctx_get_old_type(ctx)))
netlink_batch_add_msg(
bth, ctx, netlink_delroute_msg_encoder,
true);
}
cmd = RTM_NEWROUTE;
} else
return FRR_NETLINK_ERROR;
if (RSYSTEM_ROUTE(dplane_ctx_get_type(ctx)))
return FRR_NETLINK_SUCCESS;
return netlink_batch_add_msg(bth, ctx,
cmd == RTM_NEWROUTE
? netlink_newroute_msg_encoder
: netlink_delroute_msg_encoder,
false);
}
/**
* netlink_nexthop_process_nh() - Parse the gatway/if info from a new nexthop
*
* @tb: Netlink RTA data
* @family: Address family in the nhmsg
* @ifp: Interface connected - this should be NULL, we fill it in
* @ns_id: Namspace id
*
* Return: New nexthop
*/
static struct nexthop netlink_nexthop_process_nh(struct rtattr **tb,
unsigned char family,
struct interface **ifp,
ns_id_t ns_id)
{
struct nexthop nh = {};
void *gate = NULL;
enum nexthop_types_t type = 0;
int if_index = 0;
size_t sz = 0;
struct interface *ifp_lookup;
if_index = *(int *)RTA_DATA(tb[NHA_OIF]);
if (tb[NHA_GATEWAY]) {
switch (family) {
case AF_INET:
type = NEXTHOP_TYPE_IPV4_IFINDEX;
sz = 4;
break;
case AF_INET6:
type = NEXTHOP_TYPE_IPV6_IFINDEX;
sz = 16;
break;
default:
flog_warn(
EC_ZEBRA_BAD_NHG_MESSAGE,
"Nexthop gateway with bad address family (%d) received from kernel",
family);
return nh;
}
gate = RTA_DATA(tb[NHA_GATEWAY]);
} else
type = NEXTHOP_TYPE_IFINDEX;
if (type)
nh.type = type;
if (gate)
memcpy(&(nh.gate), gate, sz);
if (if_index)
nh.ifindex = if_index;
ifp_lookup =
if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), nh.ifindex);
if (ifp)
*ifp = ifp_lookup;
if (ifp_lookup)
nh.vrf_id = ifp_lookup->vrf_id;
else {
flog_warn(
EC_ZEBRA_UNKNOWN_INTERFACE,
"%s: Unknown nexthop interface %u received, defaulting to VRF_DEFAULT",
__func__, nh.ifindex);
nh.vrf_id = VRF_DEFAULT;
}
if (tb[NHA_ENCAP] && tb[NHA_ENCAP_TYPE]) {
uint16_t encap_type = *(uint16_t *)RTA_DATA(tb[NHA_ENCAP_TYPE]);
int num_labels = 0;
mpls_label_t labels[MPLS_MAX_LABELS] = {0};
if (encap_type == LWTUNNEL_ENCAP_MPLS)
num_labels = parse_encap_mpls(tb[NHA_ENCAP], labels);
if (num_labels)
nexthop_add_labels(&nh, ZEBRA_LSP_STATIC, num_labels,
labels);
}
return nh;
}
static int netlink_nexthop_process_group(struct rtattr **tb,
struct nh_grp *z_grp, int z_grp_size)
{
uint8_t count = 0;
/* linux/nexthop.h group struct */
struct nexthop_grp *n_grp = NULL;
n_grp = (struct nexthop_grp *)RTA_DATA(tb[NHA_GROUP]);
count = (RTA_PAYLOAD(tb[NHA_GROUP]) / sizeof(*n_grp));
if (!count || (count * sizeof(*n_grp)) != RTA_PAYLOAD(tb[NHA_GROUP])) {
flog_warn(EC_ZEBRA_BAD_NHG_MESSAGE,
"Invalid nexthop group received from the kernel");
return count;
}
#if 0
// TODO: Need type for something?
zlog_debug("Nexthop group type: %d",
*((uint16_t *)RTA_DATA(tb[NHA_GROUP_TYPE])));
#endif
for (int i = 0; ((i < count) && (i < z_grp_size)); i++) {
z_grp[i].id = n_grp[i].id;
z_grp[i].weight = n_grp[i].weight + 1;
}
return count;
}
/**
* netlink_nexthop_change() - Read in change about nexthops from the kernel
*
* @h: Netlink message header
* @ns_id: Namspace id
* @startup: Are we reading under startup conditions?
*
* Return: Result status
*/
int netlink_nexthop_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
{
int len;
/* nexthop group id */
uint32_t id;
unsigned char family;
int type;
afi_t afi = AFI_UNSPEC;
vrf_id_t vrf_id = VRF_DEFAULT;
struct interface *ifp = NULL;
struct nhmsg *nhm = NULL;
struct nexthop nh = {};
struct nh_grp grp[MULTIPATH_NUM] = {};
/* Count of nexthops in group array */
uint8_t grp_count = 0;
struct rtattr *tb[NHA_MAX + 1] = {};
nhm = NLMSG_DATA(h);
if (ns_id)
vrf_id = ns_id;
if (startup && h->nlmsg_type != RTM_NEWNEXTHOP)
return 0;
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct nhmsg));
if (len < 0) {
zlog_warn(
"%s: Message received from netlink is of a broken size %d %zu",
__func__, h->nlmsg_len,
(size_t)NLMSG_LENGTH(sizeof(struct nhmsg)));
return -1;
}
netlink_parse_rtattr(tb, NHA_MAX, RTM_NHA(nhm), len);
if (!tb[NHA_ID]) {
flog_warn(
EC_ZEBRA_BAD_NHG_MESSAGE,
"Nexthop group without an ID received from the kernel");
return -1;
}
/* We use the ID key'd nhg table for kernel updates */
id = *((uint32_t *)RTA_DATA(tb[NHA_ID]));
if (zebra_evpn_mh_is_fdb_nh(id)) {
/* If this is a L2 NH just ignore it */
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_EVPN_MH_NH) {
zlog_debug("Ignore kernel update (%u) for fdb-nh 0x%x",
h->nlmsg_type, id);
}
return 0;
}
family = nhm->nh_family;
afi = family2afi(family);
type = proto2zebra(nhm->nh_protocol, 0, true);
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s ID (%u) %s NS %u",
nl_msg_type_to_str(h->nlmsg_type), id,
nl_family_to_str(family), ns_id);
if (h->nlmsg_type == RTM_NEWNEXTHOP) {
if (tb[NHA_GROUP]) {
/**
* If this is a group message its only going to have
* an array of nexthop IDs associated with it
*/
grp_count = netlink_nexthop_process_group(
tb, grp, array_size(grp));
} else {
if (tb[NHA_BLACKHOLE]) {
/**
* This nexthop is just for blackhole-ing
* traffic, it should not have an OIF, GATEWAY,
* or ENCAP
*/
nh.type = NEXTHOP_TYPE_BLACKHOLE;
nh.bh_type = BLACKHOLE_UNSPEC;
} else if (tb[NHA_OIF])
/**
* This is a true new nexthop, so we need
* to parse the gateway and device info
*/
nh = netlink_nexthop_process_nh(tb, family,
&ifp, ns_id);
else {
flog_warn(
EC_ZEBRA_BAD_NHG_MESSAGE,
"Invalid Nexthop message received from the kernel with ID (%u)",
id);
return -1;
}
SET_FLAG(nh.flags, NEXTHOP_FLAG_ACTIVE);
if (nhm->nh_flags & RTNH_F_ONLINK)
SET_FLAG(nh.flags, NEXTHOP_FLAG_ONLINK);
vrf_id = nh.vrf_id;
}
if (zebra_nhg_kernel_find(id, &nh, grp, grp_count, vrf_id, afi,
type, startup))
return -1;
} else if (h->nlmsg_type == RTM_DELNEXTHOP)
zebra_nhg_kernel_del(id, vrf_id);
return 0;
}
/**
* netlink_request_nexthop() - Request nextop information from the kernel
* @zns: Zebra namespace
* @family: AF_* netlink family
* @type: RTM_* route type
*
* Return: Result status
*/
static int netlink_request_nexthop(struct zebra_ns *zns, int family, int type)
{
struct {
struct nlmsghdr n;
struct nhmsg nhm;
} req;
/* Form the request, specifying filter (rtattr) if needed. */
memset(&req, 0, sizeof(req));
req.n.nlmsg_type = type;
req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
req.nhm.nh_family = family;
return netlink_request(&zns->netlink_cmd, &req);
}
/**
* netlink_nexthop_read() - Nexthop read function using netlink interface
*
* @zns: Zebra name space
*
* Return: Result status
* Only called at bootstrap time.
*/
int netlink_nexthop_read(struct zebra_ns *zns)
{
int ret;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
/* Get nexthop objects */
ret = netlink_request_nexthop(zns, AF_UNSPEC, RTM_GETNEXTHOP);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_nexthop_change, &zns->netlink_cmd,
&dp_info, 0, 1);
if (!ret)
/* If we succesfully read in nexthop objects,
* this kernel must support them.
*/
supports_nh = true;
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_NHG)
zlog_debug("Nexthop objects %ssupported on this kernel",
supports_nh ? "" : "not ");
return ret;
}
int kernel_neigh_update(int add, int ifindex, uint32_t addr, char *lla,
int llalen, ns_id_t ns_id)
{
return netlink_neigh_update(add ? RTM_NEWNEIGH : RTM_DELNEIGH, ifindex,
addr, lla, llalen, ns_id);
}
2002-12-13 21:15:29 +01:00
/**
* netlink_neigh_update_msg_encode() - Common helper api for encoding
* evpn neighbor update as netlink messages using dataplane context object.
* Here, a neighbor refers to a bridge forwarding database entry for
* either unicast forwarding or head-end replication or an IP neighbor
* entry.
* @ctx: Dataplane context
* @cmd: Netlink command (RTM_NEWNEIGH or RTM_DELNEIGH)
* @mac: A neighbor cache link layer address
* @ip: A neighbor cache n/w layer destination address
* In the case of bridge FDB, this represnts the remote
* VTEP IP.
* @replace_obj: Whether NEW request should replace existing object or
* add to the end of the list
* @family: AF_* netlink family
* @type: RTN_* route type
* @flags: NTF_* flags
* @state: NUD_* states
* @data: data buffer pointer
* @datalen: total amount of data buffer space
*
* Return: 0 when the msg doesn't fit entirely in the buffer
* otherwise the number of bytes written to buf.
*/
static ssize_t netlink_neigh_update_msg_encode(
const struct zebra_dplane_ctx *ctx, int cmd, const struct ethaddr *mac,
const struct ipaddr *ip, bool replace_obj, uint8_t family, uint8_t type,
uint8_t flags, uint16_t state, uint32_t nhg_id, bool nfy,
uint8_t nfy_flags, bool ext, uint32_t ext_flags, void *data,
size_t datalen)
{
uint8_t protocol = RTPROT_ZEBRA;
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[];
} *req = data;
int ipa_len;
enum dplane_op_e op;
if (datalen < sizeof(*req))
return 0;
memset(req, 0, sizeof(*req));
op = dplane_ctx_get_op(ctx);
req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req->n.nlmsg_flags = NLM_F_REQUEST;
if (cmd == RTM_NEWNEIGH)
req->n.nlmsg_flags |=
NLM_F_CREATE
| (replace_obj ? NLM_F_REPLACE : NLM_F_APPEND);
req->n.nlmsg_type = cmd;
req->ndm.ndm_family = family;
req->ndm.ndm_type = type;
req->ndm.ndm_state = state;
req->ndm.ndm_flags = flags;
req->ndm.ndm_ifindex = dplane_ctx_get_ifindex(ctx);
if (!nl_attr_put(&req->n, datalen, NDA_PROTOCOL, &protocol,
sizeof(protocol)))
return 0;
if (mac) {
if (!nl_attr_put(&req->n, datalen, NDA_LLADDR, mac, 6))
return 0;
}
if (nhg_id) {
if (!nl_attr_put32(&req->n, datalen, NDA_NH_ID, nhg_id))
return 0;
}
if (nfy) {
zebra: support for MAC-IP sync routes MAC-IP routes are used for syncing local entries across redundant switches in an EVPN-MH setup. A path from a peer that has a local ES as destination is tagged as a SYNC path. The SYNC path results in the addition of local MAC and/or local neigh entry in zebra and in the dataplane. Implementation overview ======================= 1. Three new flags "local-inactive", "peer-active" and "peer-proxy" are maintained per-local-MAC and per-local-Neigh entry. 2. The "peer-XXX" flags are set and cleared via SYNC path updates from BGP. Proxy sync paths result in the setting of "peer-proxy" flag (and non-proxies result in the "peer-active"). 3. A neigh entry that has a "peer-XXX" flag set is programmed as "static" in the dataplane. 4. A MAC entry that has a "peer-XXX" flag set or is referenced by a sync-neigh entry (that has a "peer-XXX" flags set) is programmed as "static" in the dataplane. 5. The sync-seq number is used to normalize the MM seq number across all the redundant switches i.e. the max MM seq number across all switches is used by each of the switches. This commit also includes the changes needed for extended MM seq syncing. 6. A MAC/neigh entry has to be local-active or peer-active to sent to BGP. An entry that is NOT local-active is sent with the proxy flag (so BGP can "proxy" advertise it). 7. The "peer-active" flag is aged out by zebra by using a hold_timer (this is instead of being abruptly dropped on SYNC path delete). This age-out is needed to handle peer-switch restart (procedures are specified in draft-rbickhart-evpn-ip-mac-proxy-adv). The holdtime needs to be sufficiently long to allow an external neighmgr daemon or the dataplane component to independently probe and establish local reachability of a host. The MAC and neigh hold time values are configurable. PS: In the future this probing may happen in FRR itself. CLI changes to display sync info ================================ MAC === >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> root@torm-11:mgmt:~# net show evpn mac vni 1000 Number of MACs (local and remote) known for this VNI: 6 Flags: N=sync-neighs, I=local-inactive, P=peer-active, X=peer-proxy MAC Type Flags Intf/Remote ES/VTEP VLAN Seq #'s 00:02:00:00:00:25 local vlan1000 1000 0/0 02:02:00:00:00:02 local PI hostbond1 1000 0/0 02:02:00:00:00:06 remote 03:00:00:00:00:02:11:00:00:01 0/0 02:02:00:00:00:01 local X hostbond1 1000 0/0 00:00:00:00:00:11 local PI hostbond1 1000 0/0 02:02:00:00:00:05 remote 03:00:00:00:00:02:11:00:00:01 0/0 root@torm-11:mgmt:~# root@torm-11:mgmt:~# net show evpn mac vni 1000 mac 00:00:00:00:00:11 MAC: 00:00:00:00:00:11 ESI: 03:00:00:00:00:01:11:00:00:01 Intf: hostbond1(58) VLAN: 1000 Sync-info: neigh#: 0 local-inactive peer-active >>>>>>>>>>>> Local Seq: 0 Remote Seq: 0 Neighbors: No Neighbors root@torm-11:mgmt:~# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> neigh ===== >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> root@torm-11:mgmt:~# net show evpn arp vni 1003 Number of ARPs (local and remote) known for this VNI: 4 Flags: I=local-inactive, P=peer-active, X=peer-proxy Neighbor Type Flags State MAC Remote ES/VTEP Seq #'s 2001:fee1:0:3::6 local active 00:02:00:00:00:25 0/0 45.0.3.66 local P active 00:02:00:00:00:66 0/0 45.0.3.6 local active 00:02:00:00:00:25 0/0 fe80::202:ff:fe00:25 local active 00:02:00:00:00:25 0/0 root@torm-11:mgmt:~# root@torm-11:mgmt:~# net show evpn arp vni 1003 ip 45.0.3.66 IP: 45.0.3.66 Type: local State: active MAC: 00:02:00:00:00:66 Sync-info: peer-active >>>>>>>>>>>>>>>> Local Seq: 0 Remote Seq: 0 root@torm-11:mgmt:~# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
2020-03-29 17:43:55 +02:00
if (!nl_attr_put(&req->n, datalen, NDA_NOTIFY,
&nfy_flags, sizeof(nfy_flags)))
return 0;
}
if (ext) {
if (!nl_attr_put(&req->n, datalen, NDA_EXT_FLAGS, &ext_flags,
sizeof(ext_flags)))
return 0;
}
ipa_len = IS_IPADDR_V4(ip) ? IPV4_MAX_BYTELEN : IPV6_MAX_BYTELEN;
if (!nl_attr_put(&req->n, datalen, NDA_DST, &ip->ip.addr, ipa_len))
return 0;
if (op == DPLANE_OP_MAC_INSTALL || op == DPLANE_OP_MAC_DELETE) {
vlanid_t vid = dplane_ctx_mac_get_vlan(ctx);
if (vid > 0) {
if (!nl_attr_put16(&req->n, datalen, NDA_VLAN, vid))
return 0;
}
if (!nl_attr_put32(&req->n, datalen, NDA_MASTER,
dplane_ctx_mac_get_br_ifindex(ctx)))
return 0;
}
return NLMSG_ALIGN(req->n.nlmsg_len);
}
/*
* Add remote VTEP to the flood list for this VxLAN interface (VNI). This
* is done by adding an FDB entry with a MAC of 00:00:00:00:00:00.
*/
static ssize_t
netlink_vxlan_flood_update_ctx(const struct zebra_dplane_ctx *ctx, int cmd,
void *buf, size_t buflen)
{
struct ethaddr dst_mac = {.octet = {0}};
return netlink_neigh_update_msg_encode(
ctx, cmd, &dst_mac, dplane_ctx_neigh_get_ipaddr(ctx), false,
PF_BRIDGE, 0, NTF_SELF, (NUD_NOARP | NUD_PERMANENT), 0 /*nhg*/,
false /*nfy*/, 0 /*nfy_flags*/, false /*ext*/, 0 /*ext_flags*/,
buf, buflen);
}
#ifndef NDA_RTA
#define NDA_RTA(r) \
((struct rtattr *)(((char *)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg))))
#endif
static int netlink_macfdb_change(struct nlmsghdr *h, int len, ns_id_t ns_id)
{
struct ndmsg *ndm;
struct interface *ifp;
struct zebra_if *zif;
struct rtattr *tb[NDA_MAX + 1];
struct interface *br_if;
struct ethaddr mac;
vlanid_t vid = 0;
struct in_addr vtep_ip;
int vid_present = 0, dst_present = 0;
char buf[ETHER_ADDR_STRLEN];
char vid_buf[20];
char dst_buf[30];
bool sticky;
bool local_inactive = false;
bool dp_static = false;
uint32_t nhg_id = 0;
ndm = NLMSG_DATA(h);
/* We only process macfdb notifications if EVPN is enabled */
if (!is_evpn_enabled())
return 0;
/* Parse attributes and extract fields of interest. Do basic
* validation of the fields.
*/
memset(tb, 0, sizeof tb);
netlink_parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);
if (!tb[NDA_LLADDR]) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s AF_BRIDGE IF %u - no LLADDR",
nl_msg_type_to_str(h->nlmsg_type),
ndm->ndm_ifindex);
return 0;
}
if (RTA_PAYLOAD(tb[NDA_LLADDR]) != ETH_ALEN) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s AF_BRIDGE IF %u - LLADDR is not MAC, len %lu",
nl_msg_type_to_str(h->nlmsg_type), ndm->ndm_ifindex,
(unsigned long)RTA_PAYLOAD(tb[NDA_LLADDR]));
return 0;
}
memcpy(&mac, RTA_DATA(tb[NDA_LLADDR]), ETH_ALEN);
if ((NDA_VLAN <= NDA_MAX) && tb[NDA_VLAN]) {
vid_present = 1;
vid = *(uint16_t *)RTA_DATA(tb[NDA_VLAN]);
snprintf(vid_buf, sizeof(vid_buf), " VLAN %u", vid);
}
if (tb[NDA_DST]) {
/* TODO: Only IPv4 supported now. */
dst_present = 1;
memcpy(&vtep_ip.s_addr, RTA_DATA(tb[NDA_DST]),
IPV4_MAX_BYTELEN);
snprintfrr(dst_buf, sizeof(dst_buf), " dst %pI4",
&vtep_ip);
}
if (tb[NDA_NH_ID])
nhg_id = *(uint32_t *)RTA_DATA(tb[NDA_NH_ID]);
if (ndm->ndm_state & NUD_STALE)
local_inactive = true;
if (tb[NDA_NOTIFY]) {
uint8_t nfy_flags;
dp_static = true;
nfy_flags = *(uint8_t *)RTA_DATA(tb[NDA_NOTIFY]);
/* local activity has not been detected on the entry */
if (nfy_flags & (1 << BR_FDB_NFY_INACTIVE))
local_inactive = true;
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("Rx %s AF_BRIDGE IF %u%s st 0x%x fl 0x%x MAC %s%s nhg %d",
nl_msg_type_to_str(h->nlmsg_type),
ndm->ndm_ifindex, vid_present ? vid_buf : "",
ndm->ndm_state, ndm->ndm_flags,
prefix_mac2str(&mac, buf, sizeof(buf)),
dst_present ? dst_buf : "", nhg_id);
/* The interface should exist. */
ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
ndm->ndm_ifindex);
if (!ifp || !ifp->info)
return 0;
/* The interface should be something we're interested in. */
if (!IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
return 0;
zif = (struct zebra_if *)ifp->info;
if ((br_if = zif->brslave_info.br_if) == NULL) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s AF_BRIDGE IF %s(%u) brIF %u - no bridge master",
nl_msg_type_to_str(h->nlmsg_type), ifp->name,
ndm->ndm_ifindex,
zif->brslave_info.bridge_ifindex);
return 0;
}
sticky = !!(ndm->ndm_flags & NTF_STICKY);
if (filter_vlan && vid != filter_vlan) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(" Filtered due to filter vlan: %d",
filter_vlan);
return 0;
}
/* If add or update, do accordingly if learnt on a "local" interface; if
* the notification is over VxLAN, this has to be related to
* multi-homing,
* so perform an implicit delete of any local entry (if it exists).
*/
if (h->nlmsg_type == RTM_NEWNEIGH) {
/* Drop "permanent" entries. */
if (ndm->ndm_state & NUD_PERMANENT) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
" Dropping entry because of NUD_PERMANENT");
return 0;
}
if (IS_ZEBRA_IF_VXLAN(ifp))
return zebra_vxlan_check_del_local_mac(ifp, br_if, &mac,
vid);
return zebra_vxlan_local_mac_add_update(ifp, br_if, &mac, vid,
sticky, local_inactive, dp_static);
}
/* This is a delete notification.
* Ignore the notification with IP dest as it may just signify that the
* MAC has moved from remote to local. The exception is the special
* all-zeros MAC that represents the BUM flooding entry; we may have
* to readd it. Otherwise,
* 1. For a MAC over VxLan, check if it needs to be refreshed(readded)
* 2. For a MAC over "local" interface, delete the mac
* Note: We will get notifications from both bridge driver and VxLAN
* driver.
*/
if (nhg_id)
return 0;
if (dst_present) {
u_char zero_mac[6] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
if (!memcmp(zero_mac, mac.octet, ETH_ALEN))
return zebra_vxlan_check_readd_vtep(ifp, vtep_ip);
return 0;
}
if (IS_ZEBRA_IF_VXLAN(ifp))
return zebra_vxlan_check_readd_remote_mac(ifp, br_if, &mac,
vid);
return zebra_vxlan_local_mac_del(ifp, br_if, &mac, vid);
}
static int netlink_macfdb_table(struct nlmsghdr *h, ns_id_t ns_id, int startup)
{
int len;
struct ndmsg *ndm;
if (h->nlmsg_type != RTM_NEWNEIGH)
return 0;
/* Length validity. */
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
if (len < 0)
return -1;
/* We are interested only in AF_BRIDGE notifications. */
ndm = NLMSG_DATA(h);
if (ndm->ndm_family != AF_BRIDGE)
return 0;
return netlink_macfdb_change(h, len, ns_id);
}
/* Request for MAC FDB information from the kernel */
static int netlink_request_macs(struct nlsock *netlink_cmd, int family,
int type, ifindex_t master_ifindex)
{
struct {
struct nlmsghdr n;
struct ifinfomsg ifm;
char buf[256];
} req;
/* Form the request, specifying filter (rtattr) if needed. */
memset(&req, 0, sizeof(req));
req.n.nlmsg_type = type;
req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
req.ifm.ifi_family = family;
if (master_ifindex)
nl_attr_put32(&req.n, sizeof(req), IFLA_MASTER, master_ifindex);
return netlink_request(netlink_cmd, &req);
}
/*
* MAC forwarding database read using netlink interface. This is invoked
* at startup.
*/
int netlink_macfdb_read(struct zebra_ns *zns)
{
int ret;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
/* Get bridge FDB table. */
ret = netlink_request_macs(&zns->netlink_cmd, AF_BRIDGE, RTM_GETNEIGH,
0);
if (ret < 0)
return ret;
/* We are reading entire table. */
filter_vlan = 0;
ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
&dp_info, 0, 1);
return ret;
}
/*
* MAC forwarding database read using netlink interface. This is for a
* specific bridge and matching specific access VLAN (if VLAN-aware bridge).
*/
int netlink_macfdb_read_for_bridge(struct zebra_ns *zns, struct interface *ifp,
struct interface *br_if)
{
struct zebra_if *br_zif;
struct zebra_if *zif;
struct zebra_l2info_vxlan *vxl;
struct zebra_dplane_info dp_info;
int ret = 0;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
/* Save VLAN we're filtering on, if needed. */
br_zif = (struct zebra_if *)br_if->info;
zif = (struct zebra_if *)ifp->info;
vxl = &zif->l2info.vxl;
if (IS_ZEBRA_IF_BRIDGE_VLAN_AWARE(br_zif))
filter_vlan = vxl->access_vlan;
/* Get bridge FDB table for specific bridge - we do the VLAN filtering.
*/
ret = netlink_request_macs(&zns->netlink_cmd, AF_BRIDGE, RTM_GETNEIGH,
br_if->ifindex);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
&dp_info, 0, 0);
/* Reset VLAN filter. */
filter_vlan = 0;
return ret;
}
/* Request for MAC FDB for a specific MAC address in VLAN from the kernel */
static int netlink_request_specific_mac_in_bridge(struct zebra_ns *zns,
int family,
int type,
struct interface *br_if,
struct ethaddr *mac,
vlanid_t vid)
{
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req;
struct zebra_if *br_zif;
char buf[ETHER_ADDR_STRLEN];
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req.n.nlmsg_type = type; /* RTM_GETNEIGH */
req.n.nlmsg_flags = NLM_F_REQUEST;
req.ndm.ndm_family = family; /* AF_BRIDGE */
/* req.ndm.ndm_state = NUD_REACHABLE; */
nl_attr_put(&req.n, sizeof(req), NDA_LLADDR, mac, 6);
br_zif = (struct zebra_if *)br_if->info;
if (IS_ZEBRA_IF_BRIDGE_VLAN_AWARE(br_zif) && vid > 0)
nl_attr_put16(&req.n, sizeof(req), NDA_VLAN, vid);
nl_attr_put32(&req.n, sizeof(req), NDA_MASTER, br_if->ifindex);
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s: Tx family %s IF %s(%u) vrf %s(%u) MAC %s vid %u",
__func__, nl_family_to_str(req.ndm.ndm_family),
br_if->name, br_if->ifindex,
vrf_id_to_name(br_if->vrf_id), br_if->vrf_id,
prefix_mac2str(mac, buf, sizeof(buf)), vid);
return netlink_request(&zns->netlink_cmd, &req);
}
int netlink_macfdb_read_specific_mac(struct zebra_ns *zns,
struct interface *br_if,
struct ethaddr *mac, vlanid_t vid)
{
int ret = 0;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
/* Get bridge FDB table for specific bridge - we do the VLAN filtering.
*/
ret = netlink_request_specific_mac_in_bridge(zns, AF_BRIDGE,
RTM_GETNEIGH,
br_if, mac, vid);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
&dp_info, 1, 0);
return ret;
}
/*
* Netlink-specific handler for MAC updates using dataplane context object.
*/
ssize_t netlink_macfdb_update_ctx(struct zebra_dplane_ctx *ctx, void *data,
size_t datalen)
{
struct ipaddr vtep_ip;
vlanid_t vid;
ssize_t total;
int cmd;
uint8_t flags;
uint16_t state;
uint32_t nhg_id;
uint32_t update_flags;
bool nfy = false;
uint8_t nfy_flags = 0;
cmd = dplane_ctx_get_op(ctx) == DPLANE_OP_MAC_INSTALL
? RTM_NEWNEIGH : RTM_DELNEIGH;
flags = NTF_MASTER;
state = NUD_REACHABLE;
update_flags = dplane_ctx_mac_get_update_flags(ctx);
if (update_flags & DPLANE_MAC_REMOTE) {
flags |= NTF_SELF;
if (dplane_ctx_mac_is_sticky(ctx)) {
/* NUD_NOARP prevents the entry from expiring */
state |= NUD_NOARP;
/* sticky the entry from moving */
flags |= NTF_STICKY;
} else {
flags |= NTF_EXT_LEARNED;
}
/* if it was static-local previously we need to clear the
* notify flags on replace with remote
*/
if (update_flags & DPLANE_MAC_WAS_STATIC)
nfy = true;
} else {
/* local mac */
if (update_flags & DPLANE_MAC_SET_STATIC) {
nfy_flags |= (1 << BR_FDB_NFY_STATIC);
state |= NUD_NOARP;
}
if (update_flags & DPLANE_MAC_SET_INACTIVE)
nfy_flags |= (1 << BR_FDB_NFY_INACTIVE);
nfy = true;
}
nhg_id = dplane_ctx_mac_get_nhg_id(ctx);
vtep_ip.ipaddr_v4 = *(dplane_ctx_mac_get_vtep_ip(ctx));
SET_IPADDR_V4(&vtep_ip);
if (IS_ZEBRA_DEBUG_KERNEL) {
char ipbuf[PREFIX_STRLEN];
char buf[ETHER_ADDR_STRLEN];
char vid_buf[20];
const struct ethaddr *mac = dplane_ctx_mac_get_addr(ctx);
vid = dplane_ctx_mac_get_vlan(ctx);
if (vid > 0)
snprintf(vid_buf, sizeof(vid_buf), " VLAN %u", vid);
else
vid_buf[0] = '\0';
zlog_debug(
"Tx %s family %s IF %s(%u)%s %sMAC %s dst %s nhg %u%s%s%s%s%s",
nl_msg_type_to_str(cmd), nl_family_to_str(AF_BRIDGE),
dplane_ctx_get_ifname(ctx), dplane_ctx_get_ifindex(ctx),
vid_buf, dplane_ctx_mac_is_sticky(ctx) ? "sticky " : "",
prefix_mac2str(mac, buf, sizeof(buf)),
ipaddr2str(&vtep_ip, ipbuf, sizeof(ipbuf)), nhg_id,
(update_flags & DPLANE_MAC_REMOTE) ? " rem" : "",
(update_flags & DPLANE_MAC_WAS_STATIC) ? " clr_sync"
: "",
(update_flags & DPLANE_MAC_SET_STATIC) ? " static" : "",
(update_flags & DPLANE_MAC_SET_INACTIVE) ? " inactive"
: "",
nfy ? " nfy" : "");
}
total = netlink_neigh_update_msg_encode(
ctx, cmd, dplane_ctx_mac_get_addr(ctx), &vtep_ip, true,
AF_BRIDGE, 0, flags, state, nhg_id, nfy, nfy_flags,
false /*ext*/, 0 /*ext_flags*/, data, datalen);
return total;
}
/*
* In the event the kernel deletes ipv4 link-local neighbor entries created for
* 5549 support, re-install them.
*/
static void netlink_handle_5549(struct ndmsg *ndm, struct zebra_if *zif,
struct interface *ifp, struct ipaddr *ip,
bool handle_failed)
{
if (ndm->ndm_family != AF_INET)
return;
if (!zif->v6_2_v4_ll_neigh_entry)
return;
if (ipv4_ll.s_addr != ip->ip._v4_addr.s_addr)
return;
if (handle_failed && ndm->ndm_state & NUD_FAILED) {
zlog_info("Neighbor Entry for %s has entered a failed state, not reinstalling",
ifp->name);
return;
}
if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, &zif->v6_2_v4_ll_addr6, true);
}
#define NUD_VALID \
(NUD_PERMANENT | NUD_NOARP | NUD_REACHABLE | NUD_PROBE | NUD_STALE \
| NUD_DELAY)
#define NUD_LOCAL_ACTIVE \
(NUD_PERMANENT | NUD_NOARP | NUD_REACHABLE)
static int netlink_ipneigh_change(struct nlmsghdr *h, int len, ns_id_t ns_id)
{
struct ndmsg *ndm;
struct interface *ifp;
struct zebra_if *zif;
struct rtattr *tb[NDA_MAX + 1];
struct interface *link_if;
struct ethaddr mac;
struct ipaddr ip;
struct vrf *vrf;
char buf[ETHER_ADDR_STRLEN];
char buf2[INET6_ADDRSTRLEN];
int mac_present = 0;
bool is_ext;
bool is_router;
bool local_inactive;
ndm = NLMSG_DATA(h);
/* The interface should exist. */
ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
ndm->ndm_ifindex);
if (!ifp || !ifp->info)
return 0;
vrf = vrf_lookup_by_id(ifp->vrf_id);
zif = (struct zebra_if *)ifp->info;
/* Parse attributes and extract fields of interest. */
memset(tb, 0, sizeof(tb));
netlink_parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);
if (!tb[NDA_DST]) {
zlog_debug("%s family %s IF %s(%u) vrf %s(%u) - no DST",
nl_msg_type_to_str(h->nlmsg_type),
nl_family_to_str(ndm->ndm_family), ifp->name,
ndm->ndm_ifindex, VRF_LOGNAME(vrf), ifp->vrf_id);
return 0;
}
memset(&ip, 0, sizeof(struct ipaddr));
ip.ipa_type = (ndm->ndm_family == AF_INET) ? IPADDR_V4 : IPADDR_V6;
memcpy(&ip.ip.addr, RTA_DATA(tb[NDA_DST]), RTA_PAYLOAD(tb[NDA_DST]));
/* if kernel deletes our rfc5549 neighbor entry, re-install it */
if (h->nlmsg_type == RTM_DELNEIGH && (ndm->ndm_state & NUD_PERMANENT)) {
netlink_handle_5549(ndm, zif, ifp, &ip, false);
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"\tNeighbor Entry Received is a 5549 entry, finished");
return 0;
}
/* if kernel marks our rfc5549 neighbor entry invalid, re-install it */
if (h->nlmsg_type == RTM_NEWNEIGH && !(ndm->ndm_state & NUD_VALID))
netlink_handle_5549(ndm, zif, ifp, &ip, true);
/* The neighbor is present on an SVI. From this, we locate the
* underlying
* bridge because we're only interested in neighbors on a VxLAN bridge.
* The bridge is located based on the nature of the SVI:
* (a) In the case of a VLAN-aware bridge, the SVI is a L3 VLAN
* interface
* and is linked to the bridge
* (b) In the case of a VLAN-unaware bridge, the SVI is the bridge
* inteface
* itself
*/
if (IS_ZEBRA_IF_VLAN(ifp)) {
link_if = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
zif->link_ifindex);
if (!link_if)
return 0;
} else if (IS_ZEBRA_IF_BRIDGE(ifp))
link_if = ifp;
else {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"\tNeighbor Entry received is not on a VLAN or a BRIDGE, ignoring");
return 0;
}
memset(&mac, 0, sizeof(struct ethaddr));
if (h->nlmsg_type == RTM_NEWNEIGH) {
if (tb[NDA_LLADDR]) {
if (RTA_PAYLOAD(tb[NDA_LLADDR]) != ETH_ALEN) {
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"%s family %s IF %s(%u) vrf %s(%u) - LLADDR is not MAC, len %lu",
nl_msg_type_to_str(
h->nlmsg_type),
nl_family_to_str(
ndm->ndm_family),
ifp->name, ndm->ndm_ifindex,
VRF_LOGNAME(vrf), ifp->vrf_id,
(unsigned long)RTA_PAYLOAD(
tb[NDA_LLADDR]));
return 0;
}
mac_present = 1;
memcpy(&mac, RTA_DATA(tb[NDA_LLADDR]), ETH_ALEN);
}
is_ext = !!(ndm->ndm_flags & NTF_EXT_LEARNED);
is_router = !!(ndm->ndm_flags & NTF_ROUTER);
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug(
"Rx %s family %s IF %s(%u) vrf %s(%u) IP %s MAC %s state 0x%x flags 0x%x",
nl_msg_type_to_str(h->nlmsg_type),
nl_family_to_str(ndm->ndm_family), ifp->name,
ndm->ndm_ifindex, VRF_LOGNAME(vrf), ifp->vrf_id,
ipaddr2str(&ip, buf2, sizeof(buf2)),
mac_present
? prefix_mac2str(&mac, buf, sizeof(buf))
: "",
ndm->ndm_state, ndm->ndm_flags);
/* If the neighbor state is valid for use, process as an add or
* update
* else process as a delete. Note that the delete handling may
* result
* in re-adding the neighbor if it is a valid "remote" neighbor.
*/
if (ndm->ndm_state & NUD_VALID) {
local_inactive = !(ndm->ndm_state & NUD_LOCAL_ACTIVE);
/* XXX - populate dp-static based on the sync flags
* in the kernel
*/
return zebra_vxlan_handle_kernel_neigh_update(
ifp, link_if, &ip, &mac, ndm->ndm_state,
is_ext, is_router, local_inactive,
false /* dp_static */);
}
return zebra_vxlan_handle_kernel_neigh_del(ifp, link_if, &ip);
}
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("Rx %s family %s IF %s(%u) vrf %s(%u) IP %s",
nl_msg_type_to_str(h->nlmsg_type),
nl_family_to_str(ndm->ndm_family), ifp->name,
ndm->ndm_ifindex, VRF_LOGNAME(vrf), ifp->vrf_id,
ipaddr2str(&ip, buf2, sizeof(buf2)));
/* Process the delete - it may result in re-adding the neighbor if it is
* a valid "remote" neighbor.
*/
return zebra_vxlan_handle_kernel_neigh_del(ifp, link_if, &ip);
}
static int netlink_neigh_table(struct nlmsghdr *h, ns_id_t ns_id, int startup)
{
int len;
struct ndmsg *ndm;
if (h->nlmsg_type != RTM_NEWNEIGH)
return 0;
/* Length validity. */
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
if (len < 0)
return -1;
/* We are interested only in AF_INET or AF_INET6 notifications. */
ndm = NLMSG_DATA(h);
if (ndm->ndm_family != AF_INET && ndm->ndm_family != AF_INET6)
return 0;
return netlink_neigh_change(h, len);
}
/* Request for IP neighbor information from the kernel */
static int netlink_request_neigh(struct nlsock *netlink_cmd, int family,
int type, ifindex_t ifindex)
{
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req;
/* Form the request, specifying filter (rtattr) if needed. */
memset(&req, 0, sizeof(req));
req.n.nlmsg_type = type;
req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req.ndm.ndm_family = family;
if (ifindex)
nl_attr_put32(&req.n, sizeof(req), NDA_IFINDEX, ifindex);
return netlink_request(netlink_cmd, &req);
}
/*
* IP Neighbor table read using netlink interface. This is invoked
* at startup.
*/
int netlink_neigh_read(struct zebra_ns *zns)
{
int ret;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
/* Get IP neighbor table. */
ret = netlink_request_neigh(&zns->netlink_cmd, AF_UNSPEC, RTM_GETNEIGH,
0);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
&dp_info, 0, 1);
return ret;
}
/*
* IP Neighbor table read using netlink interface. This is for a specific
* VLAN device.
*/
int netlink_neigh_read_for_vlan(struct zebra_ns *zns, struct interface *vlan_if)
{
int ret = 0;
struct zebra_dplane_info dp_info;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
ret = netlink_request_neigh(&zns->netlink_cmd, AF_UNSPEC, RTM_GETNEIGH,
vlan_if->ifindex);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
&dp_info, 0, 0);
return ret;
}
/*
* Request for a specific IP in VLAN (SVI) device from IP Neighbor table,
* read using netlink interface.
*/
static int netlink_request_specific_neigh_in_vlan(struct zebra_ns *zns,
int type, struct ipaddr *ip,
ifindex_t ifindex)
{
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req;
int ipa_len;
/* Form the request, specifying filter (rtattr) if needed. */
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_type = type; /* RTM_GETNEIGH */
req.ndm.ndm_ifindex = ifindex;
if (IS_IPADDR_V4(ip)) {
ipa_len = IPV4_MAX_BYTELEN;
req.ndm.ndm_family = AF_INET;
} else {
ipa_len = IPV6_MAX_BYTELEN;
req.ndm.ndm_family = AF_INET6;
}
nl_attr_put(&req.n, sizeof(req), NDA_DST, &ip->ip.addr, ipa_len);
if (IS_ZEBRA_DEBUG_KERNEL) {
char buf[INET6_ADDRSTRLEN];
zlog_debug("%s: Tx %s family %s IF %u IP %s flags 0x%x",
__func__, nl_msg_type_to_str(type),
nl_family_to_str(req.ndm.ndm_family), ifindex,
ipaddr2str(ip, buf, sizeof(buf)), req.n.nlmsg_flags);
}
return netlink_request(&zns->netlink_cmd, &req);
}
int netlink_neigh_read_specific_ip(struct ipaddr *ip,
struct interface *vlan_if)
{
int ret = 0;
struct zebra_ns *zns;
struct zebra_vrf *zvrf = zebra_vrf_lookup_by_id(vlan_if->vrf_id);
char buf[INET6_ADDRSTRLEN];
struct zebra_dplane_info dp_info;
zns = zvrf->zns;
zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_debug("%s: neigh request IF %s(%u) IP %s vrf %s(%u)",
__func__, vlan_if->name, vlan_if->ifindex,
ipaddr2str(ip, buf, sizeof(buf)),
vrf_id_to_name(vlan_if->vrf_id), vlan_if->vrf_id);
ret = netlink_request_specific_neigh_in_vlan(zns, RTM_GETNEIGH, ip,
vlan_if->ifindex);
if (ret < 0)
return ret;
ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
&dp_info, 1, 0);
return ret;
}
int netlink_neigh_change(struct nlmsghdr *h, ns_id_t ns_id)
{
int len;
struct ndmsg *ndm;
if (!(h->nlmsg_type == RTM_NEWNEIGH || h->nlmsg_type == RTM_DELNEIGH))
return 0;
/* Length validity. */
len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
if (len < 0) {
zlog_err(
"%s: Message received from netlink is of a broken size %d %zu",
__func__, h->nlmsg_len,
(size_t)NLMSG_LENGTH(sizeof(struct ndmsg)));
return -1;
}
/* Is this a notification for the MAC FDB or IP neighbor table? */
ndm = NLMSG_DATA(h);
if (ndm->ndm_family == AF_BRIDGE)
return netlink_macfdb_change(h, len, ns_id);
if (ndm->ndm_type != RTN_UNICAST)
return 0;
if (ndm->ndm_family == AF_INET || ndm->ndm_family == AF_INET6)
return netlink_ipneigh_change(h, len, ns_id);
else {
flog_warn(
EC_ZEBRA_UNKNOWN_FAMILY,
"Invalid address family: %u received from kernel neighbor change: %s",
ndm->ndm_family, nl_msg_type_to_str(h->nlmsg_type));
return 0;
}
return 0;
}
/*
* Utility neighbor-update function, using info from dplane context.
*/
static ssize_t netlink_neigh_update_ctx(const struct zebra_dplane_ctx *ctx,
int cmd, void *buf, size_t buflen)
{
const struct ipaddr *ip;
const struct ethaddr *mac;
uint8_t flags;
uint16_t state;
uint8_t family;
uint32_t update_flags;
uint32_t ext_flags = 0;
bool ext = false;
ip = dplane_ctx_neigh_get_ipaddr(ctx);
mac = dplane_ctx_neigh_get_mac(ctx);
if (is_zero_mac(mac))
mac = NULL;
update_flags = dplane_ctx_neigh_get_update_flags(ctx);
flags = neigh_flags_to_netlink(dplane_ctx_neigh_get_flags(ctx));
state = neigh_state_to_netlink(dplane_ctx_neigh_get_state(ctx));
family = IS_IPADDR_V4(ip) ? AF_INET : AF_INET6;
if (update_flags & DPLANE_NEIGH_REMOTE) {
flags |= NTF_EXT_LEARNED;
/* if it was static-local previously we need to clear the
* ext flags on replace with remote
*/
if (update_flags & DPLANE_NEIGH_WAS_STATIC)
ext = true;
} else {
ext = true;
/* local neigh */
if (update_flags & DPLANE_NEIGH_SET_STATIC)
ext_flags |= NTF_E_MH_PEER_SYNC;
/* the ndm_state set for local entries can be REACHABLE or
* STALE. if the dataplane has already establish reachability
* (in the meantime) FRR must not over-write it with STALE.
* this accidental race/over-write is avoided by using the
* WEAK_OVERRIDE_STATE
*/
ext_flags |= NTF_E_WEAK_OVERRIDE_STATE;
}
if (IS_ZEBRA_DEBUG_KERNEL) {
char buf[INET6_ADDRSTRLEN];
char buf2[ETHER_ADDR_STRLEN];
zlog_debug(
"Tx %s family %s IF %s(%u) Neigh %s MAC %s flags 0x%x state 0x%x",
nl_msg_type_to_str(cmd), nl_family_to_str(family),
dplane_ctx_get_ifname(ctx), dplane_ctx_get_ifindex(ctx),
ipaddr2str(ip, buf, sizeof(buf)),
mac ? prefix_mac2str(mac, buf2, sizeof(buf2)) : "null",
flags, state);
}
return netlink_neigh_update_msg_encode(
ctx, cmd, mac, ip, true, family, RTN_UNICAST, flags, state,
0 /*nhg*/, false /*nfy*/, 0 /*nfy_flags*/, ext, ext_flags, buf,
buflen);
}
static ssize_t netlink_neigh_msg_encoder(struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
ssize_t ret;
switch (dplane_ctx_get_op(ctx)) {
case DPLANE_OP_NEIGH_INSTALL:
case DPLANE_OP_NEIGH_UPDATE:
case DPLANE_OP_NEIGH_DISCOVER:
ret = netlink_neigh_update_ctx(ctx, RTM_NEWNEIGH, buf, buflen);
break;
case DPLANE_OP_NEIGH_DELETE:
ret = netlink_neigh_update_ctx(ctx, RTM_DELNEIGH, buf, buflen);
break;
case DPLANE_OP_VTEP_ADD:
ret = netlink_vxlan_flood_update_ctx(ctx, RTM_NEWNEIGH, buf,
buflen);
break;
case DPLANE_OP_VTEP_DELETE:
ret = netlink_vxlan_flood_update_ctx(ctx, RTM_DELNEIGH, buf,
buflen);
break;
default:
ret = -1;
}
return ret;
}
/*
* Update MAC, using dataplane context object.
*/
enum netlink_msg_status netlink_put_mac_update_msg(struct nl_batch *bth,
struct zebra_dplane_ctx *ctx)
{
return netlink_batch_add_msg(bth, ctx, netlink_macfdb_update_ctx,
false);
}
enum netlink_msg_status
netlink_put_neigh_update_msg(struct nl_batch *bth, struct zebra_dplane_ctx *ctx)
{
return netlink_batch_add_msg(bth, ctx, netlink_neigh_msg_encoder,
false);
}
/*
* MPLS label forwarding table change via netlink interface, using dataplane
* context information.
*/
ssize_t netlink_mpls_multipath_msg_encode(int cmd, struct zebra_dplane_ctx *ctx,
void *buf, size_t buflen)
{
mpls_lse_t lse;
const struct nhlfe_list_head *head;
const zebra_nhlfe_t *nhlfe;
struct nexthop *nexthop = NULL;
unsigned int nexthop_num;
const char *routedesc;
int route_type;
struct prefix p = {0};
struct {
struct nlmsghdr n;
struct rtmsg r;
char buf[0];
} *req = buf;
if (buflen < sizeof(*req))
return 0;
memset(req, 0, sizeof(*req));
/*
* Count # nexthops so we can decide whether to use singlepath
* or multipath case.
*/
nexthop_num = 0;
head = dplane_ctx_get_nhlfe_list(ctx);
frr_each(nhlfe_list_const, head, nhlfe) {
nexthop = nhlfe->nexthop;
if (!nexthop)
continue;
if (cmd == RTM_NEWROUTE) {
/* Count all selected NHLFEs */
if (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
&& CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
nexthop_num++;
} else { /* DEL */
/* Count all installed NHLFEs */
if (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_INSTALLED)
&& CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
nexthop_num++;
}
}
if ((nexthop_num == 0) ||
(!dplane_ctx_get_best_nhlfe(ctx) && (cmd != RTM_DELROUTE)))
return 0;
req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
req->n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
req->n.nlmsg_type = cmd;
req->n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
req->r.rtm_family = AF_MPLS;
req->r.rtm_table = RT_TABLE_MAIN;
req->r.rtm_dst_len = MPLS_LABEL_LEN_BITS;
req->r.rtm_scope = RT_SCOPE_UNIVERSE;
req->r.rtm_type = RTN_UNICAST;
if (cmd == RTM_NEWROUTE) {
/* We do a replace to handle update. */
req->n.nlmsg_flags |= NLM_F_REPLACE;
/* set the protocol value if installing */
route_type = re_type_from_lsp_type(
dplane_ctx_get_best_nhlfe(ctx)->type);
req->r.rtm_protocol = zebra2proto(route_type);
}
/* Fill destination */
lse = mpls_lse_encode(dplane_ctx_get_in_label(ctx), 0, 0, 1);
if (!nl_attr_put(&req->n, buflen, RTA_DST, &lse, sizeof(mpls_lse_t)))
return 0;
/* Fill nexthops (paths) based on single-path or multipath. The paths
* chosen depend on the operation.
*/
if (nexthop_num == 1) {
routedesc = "single-path";
_netlink_mpls_debug(cmd, dplane_ctx_get_in_label(ctx),
routedesc);
nexthop_num = 0;
frr_each(nhlfe_list_const, head, nhlfe) {
nexthop = nhlfe->nexthop;
if (!nexthop)
continue;
if ((cmd == RTM_NEWROUTE
&& (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
&& CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_ACTIVE)))
|| (cmd == RTM_DELROUTE
&& (CHECK_FLAG(nhlfe->flags,
NHLFE_FLAG_INSTALLED)
&& CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_FIB)))) {
/* Add the gateway */
if (!_netlink_mpls_build_singlepath(
&p, routedesc, nhlfe, &req->n,
&req->r, buflen, cmd))
return false;
nexthop_num++;
break;
}
}
} else { /* Multipath case */
struct rtattr *nest;
const union g_addr *src1 = NULL;
nest = nl_attr_nest(&req->n, buflen, RTA_MULTIPATH);
if (!nest)
return 0;
routedesc = "multipath";
_netlink_mpls_debug(cmd, dplane_ctx_get_in_label(ctx),
routedesc);
nexthop_num = 0;
frr_each(nhlfe_list_const, head, nhlfe) {
nexthop = nhlfe->nexthop;
if (!nexthop)
continue;
if ((cmd == RTM_NEWROUTE
&& (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
&& CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_ACTIVE)))
|| (cmd == RTM_DELROUTE
&& (CHECK_FLAG(nhlfe->flags,
NHLFE_FLAG_INSTALLED)
&& CHECK_FLAG(nexthop->flags,
NEXTHOP_FLAG_FIB)))) {
nexthop_num++;
/* Build the multipath */
if (!_netlink_mpls_build_multipath(
&p, routedesc, nhlfe, &req->n,
buflen, &req->r, &src1))
return 0;
}
}
/* Add the multipath */
nl_attr_nest_end(&req->n, nest);
}
return NLMSG_ALIGN(req->n.nlmsg_len);
}
/****************************************************************************
* This code was developed in a branch that didn't have dplane APIs for
* MAC updates. Hence the use of the legacy style. It will be moved to
* the new dplane style pre-merge to master. XXX
*/
static int netlink_fdb_nh_update(uint32_t nh_id, struct in_addr vtep_ip)
{
struct {
struct nlmsghdr n;
struct nhmsg nhm;
char buf[256];
} req;
int cmd = RTM_NEWNEXTHOP;
struct zebra_vrf *zvrf;
struct zebra_ns *zns;
zvrf = zebra_vrf_get_evpn();
if (!zvrf)
return -1;
zns = zvrf->zns;
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_flags |= (NLM_F_CREATE | NLM_F_REPLACE);
req.n.nlmsg_type = cmd;
req.nhm.nh_family = AF_INET;
if (!nl_attr_put32(&req.n, sizeof(req), NHA_ID, nh_id))
return -1;
if (!nl_attr_put(&req.n, sizeof(req), NHA_FDB, NULL, 0))
return -1;
if (!nl_attr_put(&req.n, sizeof(req), NHA_GATEWAY,
&vtep_ip, IPV4_MAX_BYTELEN))
return -1;
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_EVPN_MH_NH) {
zlog_debug("Tx %s fdb-nh 0x%x %pI4",
nl_msg_type_to_str(cmd), nh_id, &vtep_ip);
}
return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
0);
}
static int netlink_fdb_nh_del(uint32_t nh_id)
{
struct {
struct nlmsghdr n;
struct nhmsg nhm;
char buf[256];
} req;
int cmd = RTM_DELNEXTHOP;
struct zebra_vrf *zvrf;
struct zebra_ns *zns;
zvrf = zebra_vrf_get_evpn();
if (!zvrf)
return -1;
zns = zvrf->zns;
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_type = cmd;
req.nhm.nh_family = AF_UNSPEC;
if (!nl_attr_put32(&req.n, sizeof(req), NHA_ID, nh_id))
return -1;
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_EVPN_MH_NH) {
zlog_debug("Tx %s fdb-nh 0x%x",
nl_msg_type_to_str(cmd), nh_id);
}
return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
0);
}
static int netlink_fdb_nhg_update(uint32_t nhg_id, uint32_t nh_cnt,
struct nh_grp *nh_ids)
{
struct {
struct nlmsghdr n;
struct nhmsg nhm;
char buf[256];
} req;
int cmd = RTM_NEWNEXTHOP;
struct zebra_vrf *zvrf;
struct zebra_ns *zns;
struct nexthop_grp grp[nh_cnt];
uint32_t i;
zvrf = zebra_vrf_get_evpn();
if (!zvrf)
return -1;
zns = zvrf->zns;
memset(&req, 0, sizeof(req));
req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_flags |= (NLM_F_CREATE | NLM_F_REPLACE);
req.n.nlmsg_type = cmd;
req.nhm.nh_family = AF_UNSPEC;
if (!nl_attr_put32(&req.n, sizeof(req), NHA_ID, nhg_id))
return -1;
if (!nl_attr_put(&req.n, sizeof(req), NHA_FDB, NULL, 0))
return -1;
memset(&grp, 0, sizeof(grp));
for (i = 0; i < nh_cnt; ++i) {
grp[i].id = nh_ids[i].id;
grp[i].weight = nh_ids[i].weight;
}
if (!nl_attr_put(&req.n, sizeof(req), NHA_GROUP,
grp, nh_cnt * sizeof(struct nexthop_grp)))
return -1;
if (IS_ZEBRA_DEBUG_KERNEL || IS_ZEBRA_DEBUG_EVPN_MH_NH) {
char vtep_str[ES_VTEP_LIST_STR_SZ];
char nh_buf[16];
vtep_str[0] = '\0';
for (i = 0; i < nh_cnt; ++i) {
snprintf(nh_buf, sizeof(nh_buf), "%u ",
grp[i].id);
strlcat(vtep_str, nh_buf, sizeof(vtep_str));
}
zlog_debug("Tx %s fdb-nhg 0x%x %s",
nl_msg_type_to_str(cmd), nhg_id, vtep_str);
}
return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
0);
}
static int netlink_fdb_nhg_del(uint32_t nhg_id)
{
return netlink_fdb_nh_del(nhg_id);
}
int kernel_upd_mac_nh(uint32_t nh_id, struct in_addr vtep_ip)
{
return netlink_fdb_nh_update(nh_id, vtep_ip);
}
int kernel_del_mac_nh(uint32_t nh_id)
{
return netlink_fdb_nh_del(nh_id);
}
int kernel_upd_mac_nhg(uint32_t nhg_id, uint32_t nh_cnt,
struct nh_grp *nh_ids)
{
return netlink_fdb_nhg_update(nhg_id, nh_cnt, nh_ids);
}
int kernel_del_mac_nhg(uint32_t nhg_id)
{
return netlink_fdb_nhg_del(nhg_id);
}
#endif /* HAVE_NETLINK */